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PREFACE

This handbook presents a comprehensive collection of civil engineering calculation
procedures useful to practicing civil engineers, surveyors, structural designers, draft-
ers, candidates for professional engineering licenses, and students. Engineers in other
disciplines—mechanical, electrical, chemical, environmental, etc.—will also find this
handbook useful for making occasional calculations outside their normal field of
specialty.

Each calculation procedure presented in this handbook gives numbered steps for per-
forming the calculation, along with a numerical example illustrating the important con-
cepts in the procedure. Many procedures include “Related Calculations” comments which
expand the application of the computation method presented. All calculation procedures
in this handbook use both the USCS (United States Customary System) and the SI (Sys-
tem International) for numerical units. Hence, the calculation procedures presented are
useful to engineers throughout the world.

Major calculation procedures presented in this handbook include stress and strain,
flexural analysis, deflection of beams, statically indeterminate structures, steel beams and
columns, riveted and welded connections, composite members, plate girders, load and re-
sistance factor design method (LRFD) for structural steel design, plastic design of steel
structures, reinforced and prestressed concrete engineering and design, surveying, route
design, highway bridges, timber engineering, soil mechanics, fluid mechanics, pumps,
piping, water supply and water treatment, wastewater treatment and disposal, hydro pow-
er, and engineering economics.

Each section of this handbook is designed to furnish comprehensive coverage of the
topics in it. Where there are major subtopics within a section, the section is divided into
parts to permit in-depth coverage of each subtopic.

Civil engineers design buildings, bridges, highways, airports, water supply, sewage
treatment, and a variety of other key structures and facilities throughout the world. Be-
cause of the importance of such structures and facilities to the civilized world, civil engi-
neers have long needed a handbook which would simplify and speed their daily design
calculations. This handbook provides an answer to that need.

While there are computer programs that help the civil engineer with a variety of engi-
neering calculations, such programs are highly specialized and do not have the breadth of
coverage this handbook provides. Further, such computer programs are usually expen-
sive. Because of their high cost, these computer programs can be justified only when a
civil engineer makes a number of repetitive calculations on almost a daily basis. In con-
trast, this handbook can be used in the office, field, drafting room, or iaboratory. It pro-
vides industry-wide coverage in a convenient and affordable package. As such, this hand-
book fills a long-existing need felt by civil engineers worldwide.

In contrast, civil engineers using civil-engineering computer programs often find data-
entry time requirements are excessive for quick one-off-type calculations. When one-off-
type calculations are needed, most civil engineers today turn to their electronic calculator,
desktop or laptop computer and perform the necessary steps to obtain the solution desired.
But where repetitive calculations are required, a purchased computer program will save
time and energy in the usual medium-size or large civil-engineering design office. Small
civil-engineering offices generally resort to manual calculation for even repetitive proce-
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dures because the investment for one or more major calculation programs is difficult to
justify in economic terms. _

Even when purchased computer programs are extensively used, careful civil engineers
still insist on manually checking results on a random basis to be certain the program is ac-
curate. This checking can be speeded by any of the calculation procedures given in this
handbook. Many civil engineers remark to the author that they feel safer, knowing they
have manually verified the computer results on a spot-check basis. With liability for civil-
engineering designs extending beyond the lifetime of the designer, every civil engineer
seeks the “security blanket’’ provided by manual verification of the results furnished by a
computer program run on a desktop, laptop, or workstation computer. This handbook
gives the tools needed for manual verification of some 2,000 civil-engineering calculation
procedures.

Each section in this handbook is written by one or more experienced professional en-
gineers who is a specialist in the field covered. The contributors draw on their wide expe-
rience in their field to give each calculation procedure an in-depth coverage of its topic.
So the person using the procedure gets step-by-step instructions for making the calcula-
tion plus background information on the subject which is the topic of the procedure.

And since the handbook is designed for worldwide use, both earlier, and more modern
topics, are covered. For example, the handbook includes concise coverage of riveted gird-
ers, columns, and connections. While today’s civil engineer may say that riveted con-
struction is a method long past its prime, there are millions of existing structures world-
wide that were built using rivets. So when a civil engineer is called on to expand,
rehabilitate, or tear down such a structure, he or she must be able to analyze the riveted
portions of the structure. This handbook provides that capability in a convenient and con-
cise form.

In the realm of modern design techniques, the load and resistance factor method
(LRFD) is covered with more than ten calculation procedures showing its use in various
design situations. The LRFD method is ultimately expected to replace the weli-known
and widely used allowable stress design (ASD) method for structural steel building
frameworks. In today’s design world many civil engineers are learning the advantages of
the LRFD method and growing to prefer it over the ASD method.

Also included in this handbook is a comprehensive section titled “How to Use This
Handbook.” It details the variety of ways a civil engineer can use this handbook in his or
her daily engineering work. Included as part of this section are steps showing the civil en-
gineer how to construct a private list of SI conversion factors for the specific work the en-
gineer specializes in.

The step-by-step practical and applied calculation procedures in this handbook are
arranged so they can be followed by anyone with an engineering or scientific background.
Each worked-out procedure presents fully explained and illustrated steps for solving sim-
ilar problems in civil-engineering design, research, field, academic, or license-examina-
tion situations. For any applied problem, all the civil engineer need do is place his or her
calculation sheets alongside this handbook and follow the step-by-step procedure line for
line to obtain the desired solution for the actual real-life problem. By following the calcu-
lation procedures in this handbook, the civil engineer, scientist, or technician will obtain
accurate results in minimum time with least effort. And the approaches and solutions pre-
sented are modern throughout.

The editor hopes this handbook is helpful to civil engineers worldwide. If the hand-
book user finds procedures which belong in the book but have been left out, he urges the
engineer to send the title of the procedure to him, in care of the publisher. If the procedure
is useful, the editor will ask for the entire text. And if the text is publishable, the editor
will include the calculation procedure in the next edition of the handbook. Full credit will
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be given to the person sending the procedure to the editor. And if users find any errors in
the handbook, the editor will be grateful for having these called to his attention. Such er-
rors will be corrected in the next printing of the handbook. In closing, the editor hopes
that civil engineers worldwide find this handbook helpful in their daily work.

Tyler G. Hicks



HOWTO USETHIS
HANDBOOK

There are two ways to enter this handbook to obtain the maximum benefit from the time
invested. The first entry is through the index; the second is through the table of contents
of the section covering the discipline, or related discipline, concerned. Each method is
discussed in detail below.

Index. Great care and considerable time were expended on preparation of the index
of this handbook so that it would be of maximum use to every reader. As a general guide,
enter the index using the generic term for the type of calculation procedure being consid-
ered. Thus, for the design of a beam, enter at beam(s). From here, progress to the specific
type of beam being considered—such as continuous, of steel. Once the page number or
numbers of the appropriate calculation procedure are determined, turn to them to find the
step-by-step instructions and worked-out example that can be followed to solve the prob-
lem quickly and accurately.

Contents. The contents of each section lists the titles of the calculation procedures
contained in that section. Where extensive use of any section is contemplated, the editor
suggests that the reader might benefit from an occasional glance at the table of contents of
that section. Such a glance will give the user of this handbook an understanding of the
breadth and coverage of a given section, or a series of sections. Then, when he or she
tumns to this handbook for assistance, the reader will be able more rapidly to find the cal-
culation procedure he or she seeks.

Calculation Procedures. Each calculation procedure is a unit in itself. However, any
given calculation procedure will contain subprocedures that might be useful to the reader.
Thus, a calculation procedure on pump selection will contain subprocedures on pipe fric-
tion loss, pump static and dynamic heads, etc. Should the reader of this handbook wish to
make a computation using any of such subprocedures, he or she will find the worked-out
steps that are presented both useful and precise. Hence, the handbook contains numerous
valuable procedures that are useful in solving a variety of applied civil engineering prob-
lems.

One other important point that should be noted about the calculation procedures pre-
sented in this handbook is that many of the calculation procedures are equally applicable
in a variety of disciplines. Thus, a beam-selection procedure can be used for civil-, chem-
ical-, mechanical-, electrical-, and nuclear-engineering activities, as well as some others.
Hence, the reader might consider a temporary neutrality for his or her particular specialty
when using the handbook because the calculation procedures are designed for universal
use.

Any of the calculation procedures presented can be programmed on a computer. Such
programming permits rapid solution of a variety of design problems. With the growing
use of low-cost time sharing, more engineering design problems are being solved using a
remote terminal in the engineering office. The editor hopes that engineers throughout the
world will make greater use of work stations and portable computers in solving applied
engineering problems. This modern equipment promises greater speed and accuracy for
nearly all the complex design problems that must be solved in today’s world of engineer-
ing.

xiii
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To make the calculation procedures more amenable to computer solution (while main-
taining ease of solution with a handheld calculator), a number of the algorithms in the
handbook have been revised to permit faster programming in a computer environment.
This enhances ease of solution for any method used—work station, portable computer, or
calculator.

SI Usage. The technical and scientific community throughout the world accepts the SI
(System International) for use in both applied and theoretical calculations. With such
widespread acceptance of SI, every engineer must become proficient in the use of this
system of units if he or she is to remain up-to-date. For this reason, every calculation pro-
cedure in this handbook is given in both the United States Customary System (USCS) and
SI. This will help all engineers become proficient in using both systems of units. In this
handbook the USCS unit is generally given first, followed by the SI value in parentheses
or brackets. Thus, if the USCS unit is 10 ft, it will be expressed as 10 ft (3 m).

Engineers accustomed to working in USCS are often timid about using SI. There real-
ly aren’t any sound reasons for these fears. SI is a logical, easily understood, and readily
manipulated group of units. Most engineers grow to prefer SI, once they become familiar
with it and overcome their fears. This handbook should do much to “convert” USCS-user
engineers to SI because it presents all calculation procedures in both the known and un-
known units.

Overseas engineers who must work in USCS because they have a job requiring its us-
age will find the dual-unit presentation of calculation procedures most helpful. Knowing
SI, they can easily convert to USCS because all procedures, tables, and illustrations are
presented in dual units.

Learning SI. An efficient way for the USCS-conversant engineer to learn SI follows
these steps:

1. List the units of measurement commonly used in your daily work.

2. Insert, opposite each USCS unit, the usual SI unit used; Table 1 shows a variety of
commonly used quantities and the corresponding SI units.

3. Find, from a table of conversion factors, such as Table 2, the value to use to convert
the USCS unit to S, and insert it in your list. (Most engineers prefer a conversion fac-
tor that can be used as a multiplier of the USCS unit to give the SI unit.)

4. Apply the conversion factors whenever you have an opportunity. Think in terms of SI
when you encounter a USCS unit.

5. Recognize—here and now—that the most difficult aspect of SI is becoming comfort-
able with the names and magnitude of the units. Numerical conversion is simple, once
you’ve set up your own conversion table. So think pascal whenever you encounter
pounds per square inch pressure, newton whenever you deal with a force in pounds,
etc.

SI Table for a Civil Engineer. Let’s say you’re a civil engineer and you wish to con-
struct a conversion table and SI literacy document for yourself. List the units you com-
monly meet in your daily work; Table 1 is the list compiled by one civil engineer. Next,
list the SI unit equivalent for the USCS unit. Obtain the equivalent from Table 2. Then,
using Table 2 again, insert the conversion multiplier in Table 1.

Keep Table 1 handy at your desk and add new units to it as you encounter them in
your work. Over a period of time you will build a personal conversion table that will be
valuable to you whenever you must use SI units. Further, since you compiled the table, it
will have a familiar and nonfrightening look, which will give you greater confidence in
using SI.
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TABLE 1 Commonly Used USCS and SI Units*

Conversion factor—

multiply USCS unit
by this factor to

USCS unit ST unit SI symbol obtain the SI unit
square feet square meters m? 0.0929
cubic feet cubic meters m’ 0.2831
pounds per square inch kilopascal kPa 6.894
pound force newton N 4.448
foot pound torque newton-meter Nm 1.356
kip-feet kilo-newton kNm 1.355
gallons per minute liters per second L/s 0.06309
kips per square inch megaPascal MPa 6.89

*Because of space limitations this table is abbreviated. For a typical engineering practice an ac-
tual table would be many times this length.

TABLE 2 Typical Conversion Table*

To convert from To Multiply by
square feet square meters 9.290304 E-02
foot per second squared meter per second squared 3.048 E-01
cubic feet cubic meters 2.831685 E-02
pound per cubic inch kilogram per cubic meter 2.767990 E+04
gallon per minute liters per second 6.309 E-02
pound per square inch kilopascal 6.894757

pound force newton 4.448222

kip per square foot Pascal 4.788026 E+04
acre-foot per day cubic meter per second 1427641 E-02
acre square meter 4.046873 E+03
cubic foot per second cubic meter per second 2.831685 E-02

Note: The E indicates an exponent, as in scientific notation, followed by a positive or negative
number, representing the power of 10 by which the given conversion factor is to be multiplied be-
fore use. Thus, for the square feet conversion factor, 9.290304 x 1/100 = 0.09290304, the factor to
be used to convert square feet to square meters. For a positive exponent, as in converting acres to
square meters, multiply by 4.046873 x 1000 = 4046.8.

Where a conversion factor cannot be found, simply use the dimensional substitution. Thus, to
convert pounds per cubic inch to kilograms per cubic meter, find 1 1b = 0.4535924 kg, and 1 in® =
0.00001638706 m>. Then, 1 Ib/in® = 0.4535924 kg/0.00001638706 m® 27,680.01, or 2.768
E+4.

*This table contains only selected values. See the U.S. Department of the Interior Metric Manu-~
al, or National Bureau of Standards, The International System of Units (SI), both available from the
U.S. Government Printing Office (GPO), for far more comprehensive listings of conversion factors.
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Units Used. In preparing the calculation procedures in this handbook, the editors and
contributors used standard SI units throughout. In a few cases, however, certain units are
still in a state of development. For example, the unit fonne is used in certain industries,
such as waste treatment. This unit is therefore used in the waste treatment section of this
handbook because it represents current practice. However, only a few SI units are still un-
der development. Hence, users of this handbook face little difficulty from this situation.

Computer-aided Calculations. Widespread availability of programmable pocket
calculators and low-cost laptop computers allow engineers and designers to save thou-
sands of hours of calculation time. Yet each calculation procedure must be programmed,
unless the engineer is willing to use off-the-shelf software. The editor-observing thou-
sands of engineers over the years-detects reluctance among technical personnel to use
untested and unproven software programs in their daily calculations. Hence, the tested
and proven procedures in this handbook form excellent programming input for program-
mable pocket calculators, laptop computers, minicomputers, and mainframes.

A variety of software application programs can be used to put the procedures in this
handbook on computer. Typical of these are MathSoft, Algor, and similar programs.

There are a number of advantages for the engineer who programs his or her own cal-
culation procedures, namely: (1) The engineer knows, understands, and approves every
step in the procedure; (2) there are no questionable, unknown, or legally worrisome steps
in the procedure; (3) the engineer has complete faith in the result because he or she knows
every component of it; and (4) if a variation of the procedure is desired, it is relatively
easy for the engineer to make the needed changes in the program, using this handbook as
the source of the steps and equations to apply.

Modern computer equipment provides greater speed and accuracy for almost all com-
plex design calculations. The editor hopes that engineers throughout the world will make
greater use of available computing equipment in solving applied engineering problems.
Becoming computer literate is a necessity for every engineer, no matter which field he or
she chooses as a specialty. The procedures in this handbook simplify every engineer’s
task of becoming computer literate because the steps given comprise—to a great extent—
the steps in the computer program that can be written.
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PART 1

STATICS, STRESS AND STRAIN,
AND FLEXURAL ANALYSIS

Principles of Statics;
Geometric Properties of Areas

If a body remains in equilibrium under a system of forces, the following conditions
obtain:

1. The algebraic sum of the components of the forces in any given direction is zero.

2. The algebraic sum of the moments of the forces with respect to any given axis is zero.

The above statements are verbal expressions of the equations of equilibrium. In the ab-
sence of any notes to the contrary, a clockwise moment is considered positive; a counter-
clockwise moment, negative.

GRAPHICAL ANALYSIS OF A
FORCE SYSTEM

The body in Fig. la is acted on by forces 4, B, and C, as shown. Draw the vector repre-
senting the equilibrant of this system.
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Force line

{ (b) Force polygon

/
/

(a) Space diagram and
string polygon

FIGURE 1. Equilibrant of force system.

Calculation Procedure:

1. Construct the system force line

In Fig. 15, draw the vector chain A-B-C, which is termed the force line. The vector ex-
tending from the initial point to the terminal point of the force line represents the resultant
R. In any force system, the resultant R is equal to and collinear with the equilibrant E, but
acts in the opposite direction. The equilibrant of a force system is a single force that will
balance the system.

2. Construct the system rays
Selecting an arbitrary point O as the pole, draw the rays from O to the ends of the vectors
and label them as shown in Fig. 1b.

3. Construct the string polygon

In Fig. la, construct the string polygon as follows: At an arbitrary point @ on the action
line of force 4, draw strings parallel to rays ar and ab. At the point where the string ab in-
tersects the action line of force B, draw a string parallel to ray bc. At the point where
string bc intersects the action line of force C, draw a string parallel to cr. The intersection
point Q of ar and cr lies on the action line of R.

4. Draw the vector for the resultant and equilibrant
In Fig. la, draw the vector representing R. Establish the magnitude and direction of this
vector from the force polygon. The action line of R passes through Q.

Last, draw a vector equal to and collinear with that representing R but opposite in di-
rection. This vector represents the equilibrant £.

Related Calculations: Use this general method for any force system acting in a
single plane. With a large number of forces, the resultant of a smaller number of forces
can be combined with the remaining forces to simplify the construction.
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Bor

wW=i001Ib
40° (444,8N)

(a) (b) {c)
FIGURE 2. Equilibrant of force system.

ANALYSIS OF STATIC FRICTION

The bar in Fig. 2a weighs 100 1b (444.8 N) and is acted on by a force P that makes an an-
gle of 55° with the horizontal. The coefficient of friction between the bar and the inclined
plane is 0.20. Compute the minimum value of P required (a) to prevent the bar from slid-
ing down the plane; (b) to cause the bar to move upward along the plane.

Calculation Procedure:

1. Select coordinate axes
Establish coordinate axes x and y through the center of the bar, parallel and perpendicular
to the plane, respectively.

2. Draw a free-body diagram of the system

In Fig. 2b, draw a free-body diagram of the bar. The bar is acted on by its weight #, the
force P, and the reaction R of the plane on the bar. Show R resolved into its x and y com-
ponents, the former being directed upward.

3. Resolve the forces into their components
The forces # and P are the important ones in this step, and they must he resolved into
their x and y components. Thus

W, = -100 sin 40° = -64.3 1b (-286.0 N)
W, =—100 cos 40° =-76.6 1b (-340.7 N)
P,.= P cos 15°=0.966P
P, = Psin 15°=0.259P
4. Apply the equations of equilibrium
Consider that the bar remains at rest and apply the equations of equilibrium. Thus
SF.=R,+0966P-64.3=0 R, =64.3-0.966P
3F,=R,+0259P-76.6=0 R,=76.6-0.259P
5. Assume maximum friction exists and solve for the applied force

Assume that R,, which represents the frictional resistance to motion, has its maximum po-
tential value. Apply R, = uR,, where u = coefficient of friction. Then R, = 0.20R, =
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0.20(76.6 — 0.259P) = 15.32 — 0.052P. Substituting for R, from step 4 yields 64.3 —
0.966P = 15.32 — 0.052P; so P = 53.6 Ib (238.4 N).

6. Draw a second free-body diagram
In Fig. 2¢, draw a free-body diagram of the bar, with R, being directed downward.

7. Solve as In steps 1 through 5
As before, R, = 76.6 — 0.259P. Also the absolute value of R, = 0.966P — 64.3. But R, =
0.20R,, = 15.32 x 0.052P. Then 0.966P — 64.3 = 15.32 — 0.052P; so P =78 2 Ib (347 6N).

ANALYSIS OF A STRUCTURAL FRAME

The frame in Fig. 3a consists of two inclined members and a tie rod. What is the tension
in the rod when a load of 1000 Ib (4448.0 N) is applied at the hinged apex? Neglect the
weight of the frame and consider the supports to be smooth.

Calculation Procedure:

1. Draw a free-body diagram of

the frame

Since friction is absent in this frame, the

reactions at the supports are vertical. .

Draw a free-body diagram as in Fig. 3b. 2 s ’g/
With the free-body diagram shown, &

compute the distances x; and x,. Since

the frame forms a 3-4-5 right triangle, x;

= 16(4/5) = 12.8 ft (3.9 m) and x, =

12(3/5) = 7.2 £ (2.2 m). (000 I5TE348 N)

2. Determine the reactions on T {

tm)

the frame (a)

Take moments with respect to 4 and B to 1000 1b (4448 N)

obtain the reactions: C

SMy=20R; - 1000(7.2) =0
SM, = 1000(12.8) ~ 20R; = 0
R, =13601b (1601.2 N) o
Rg = 640 1b (2646.7 N) A L/
3. Determine the distance y in R
Fig. 3¢
Draw a free-body diagram of member AC

in Fig. 3c. Compute y = 13(3/5) = 7.8 ft
(2.4 m). y=78'(2.4m)
4. Compute the tension in the

tie rod >
Take moments with respect to C to find A‘ 128 (39m)
the tension T in the tie rod:

0 Tie rod £

NV
S

=128’ %72}
(39m) ( {22m) IRe

T

-
360 1b {(1601.2N)
2M:=360(12.8)-7.8T=0 {c)

T=5911b(2628.8 N) FIGURE 3
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5. Verify the computed result
Draw a free-body diagram of member BC, and take moments with respect to C. The result
verifies that computed above.

GRAPHICAL ANALYSIS OF A PLANE TRUSS

Apply a graphical analysis to the cantilever truss in Fig. 4a to evaluate the forces induced
in the truss members.

Calculation Procedure:

1. Label the truss for analysis
Divide the space around the truss into regions bounded by the action lines of the external
and internal forces. Assign an uppercase letter to each region (Fig. 4).

2. Determine the reaction force
Take moments with respect to joint 8 (Fig. 4) to determine the horizontal component of
the reaction force R;;. Then compute Ry Thus ZM; = 12R; ;- 3(8 + 16 +24) - 5(6 + 12 +
18) =0, so Ry =27 kips (120.1 kN) to the right.

Since Ry is collinear with the force DE, Ry/R s = 1224, so Ry = 13.5 kips (60.0 kN)
upward, and R, = 30.2 kips (134.3 kN).

3. Apply the equations of equilibrium
Use the equations of equilibrium to find R;. Thus R;; = 27 kips (120.1 kN) to the left,
R;»=10.5 kips (46.7 kN) upward, and R; = 29.0 kips (129.0 kN).

4. Construct the force polygon

Draw the force polygon in Fig. 4b by using a suitable scale and drawing vector fg to rep-
resent force FG. Next, draw vector gh to represent force GH, and so forth. Omit the ar-
rowheads on the vectors.

8. Determine the forces in the truss members

Starting at joint 1, Fig. 4, draw a line through a in the force polygon parallel to member
AJ in the truss, and one through 4 parallel to member HJ. Designate the point of intersec-
tion of these lines as j. Now, vector aj represents the force in 4J, and vector hj represents
the force in HJ.

6. Analyze the next joint in the truss

Proceed to joint 2, where there are now only two unknown forces—BK and JK. Draw a
line through b in the force polygon parallel to BK and one through j parallel to JK. Desig-
nate the point of intersection as k. The forces BK and JX are thus determined.

7. Analyze the remaining joints

Proceed to joints 3, 4, 5, and 6, in that order, and complete the force polygon by continu-
ing the process. If the construction is accurately performed, the vector pe will parallel the
member PE in the truss.

8. Determine the magnitude of the internal forces
Scale the vector lengths to obtain the magnitude of the internal forces. Tabulate the results
as in Table 1.

9. Establish the character of the internal forces

To determine whether an internal force is one of tension or compression, proceed in this
way: Select a particular joint and proceed around the joint in a clockwise direction, listing
the letters in the order in which they appear. Then refer to the force polygon pertaining to
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(a) Truss diagram

(b) Force polygon

FIGURE 4

that joint, and proceed along the polygon in the same order. This procedure shows the di-
rection in which the force is acting at that joint.

For instance, by proceeding around joint 4, CNMKB is obtained. By tracing a path
along the force polygon in the order in which the letters appear, force CN is found to act
upward to the right; NM acts upward to the left; MK and KB act downward to the left.
Therefore, CN, MK, and KB are directed away from the joint (Fig. 4); this condition dis-
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TABLE 1 Forces in Truss Members (Fig. 4)

Force
Member kips kN
AJ +6.7 +29.8
BK +9.5 +42.2
CN +19.8 +88.0
DE +30.2 -134.2
HJ -6.0 -26.7
GM -13.0 -57.8
FP -20.0 -88.9
JK —4.5 20.0
KM +8.1 +36.0
MN -8.6 -38.2
NP +10.4 +46.2
PE -12.6 56.0

closes that they are tensile forces. Force NM is directed toward the joint; therefore, it is
compressive.

The validity of this procedure lies in the drawing of the vectors representing external
forces while proceeding around the truss in a clockwise direction. Tensile forces are
shown with a positive sign in Table 1; compressive forces are shown with a negative sign.

Related Calculations: Use this general method for any type of truss.

TRUSS ANALYSIS BY THE METHOD
OF JOINTS

Applying the method of joints, determine the forces in the truss in Fig. 5a. The load at
joint 4 has a horizontal component of 4 kips (17.8 kN) and a vertical component of 3 kips
(13.3 kN).

Calculation Procedure:

1. Compute the reactions at the supports

Using the usual analysis techniques, we find R; ;= 19 kips (84.5 kN); R;;; = 4 kips (17.8
kN); Rp =21 kips (93.4 kN).

2. List each truss member and its slope

Table 2 shows each truss member and its slope.

3. Determine the forces at a principal joint

Draw a free-body diagram, Fig. 5b, of the pin at joint 1. For the free-body diagram, as-
sume that the unknown internal forces 4/ and HJ are tensile. Apply the equations of equi-
librium to evaluate these forces, using the subscripts H and V, respectively, to identify the
horizontal and vertical components. Thus 3Fy; = 4.0 + AJy + HJ = 0 and 2F;, = 19.0 +
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FIGURE §

AJy=0; . AJy=19.0 kips (—84.5 kN); AJy =—19.0/0.75 = -25.3 kips (-112.5 kN). Sub-
stituting in the first equation gives HJ = 21.3 kips (94.7 kN).

The algebraic signs disclose that 4./ is compressive and H/J is tensile. Record these re-
sults in Table 2, showing the tensile forces as positive and compressive forces as nega-
tive.

4. Determine the forces at another joint

Draw a free-body diagram of the pin at joint 2 (Fig. 5¢). Show the known force AJ as
compressive, and assume that the unknown forces BK and JKX are tensile. Apply the equa-
tions of equilibrium, expressing the vertical components of BK and JK in terms of their
horizontal components. Thus 3F; =253 + BK,;+ JKy=0; 2F,=-6.0+19.0 + 0.75BK},
—0.75JKy=0.

Solve these simultaneous equations, to obtain BK, = —21.3 kips (-94.7 kN); JKy =
—4.0 kips (-17.8 kN); BK = —16.0 kips (-71.2 kN); JK,, = -3.0 kips (—13.3 kN). Record
these results in Table 2.

8. Continue the analysis at the next joint
Proceed to joint 3. Since there are no external horizontal forces at this joint, CLy = BKy =
21.3 kips (94.7 kN) of compression. Also, KL = 6 kips (26.7 kN) of compression.

6. Proceed to the remaining joints in their numbered order
Thus, for joint 4: ZFy=-4.0-21.3+4.0 + LMy + GM=0; 2F,=-3.0-3.0- 6.0 + LM,
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TABLE 2 Forces in Truss Members (Fig. 5)

. . Force
Horizontal Vertical
Member Slope component component kips kN
AJ 0.75 25.3 19.0 -31.7 ~-141.0
BK 0.75 213 16.0 -26.7 -118.8
CL 0.75 213 16.0 -26.7 ~118.8
DN 0.75 227 17.0 -28.3 -1259
EP 0.75 227 17.0 -28.3 -125.9
FQ 0.75 28.0 21.0 -35.0 -155.7
HJ 0.0 213 0.0 +21.3 +94.7
GM 0.0 16.0 0.0 +16.0 +71.2
GQ 0.0 28.0 0.0 +28.0 +124.5
JK 0.75 4.0 3.0 -5.0 -22.2
KL o 0.0 6.0 —6.0 -26.7
LM 2.25 53 12.0 +13.1 +58.3
MN 225 6.7 15.0 +16.4 +72.9
NP % 0.0 11.0 -11.0 —48.9
PO 0.75 5.3 4.0 -6.7 -29.8

= 0; LM = 12.0 kips (53.4 kN); LM;;= 12.0/2.25 = 5.3 kips (23.6 kN). Substituting in the
first equatton gives GM = 16.0 kips (71.2 kN).

Joint 5: 2Fy =213 — 53 + DNy + MNy=0; 2F);,=—6.0 + 16.0 — 12.0 — 0.750DN,, —
2.25MNy = 0; DNy = -22.7 kips (—101.0 kN); MN = 6.7 kips (29.8 kN); DN, =-17.0
kips (=75.6 kN); MN,, = 15.0 kips (66.7 kN).

Joint 6: EPy;= DNy = 22.7 kips (101.0 kN) of compression; NP = 11.0 kips (48.9 kN)
of compression.

Joint 7: 3Fy =227~ PQy+ FQu=0; 2F,=-8.0-17.0-0.75PQ; — 0.75FQy = 0;
PQy=-5.3 kips (-23.6 kN); FQ, =-28.0 kips (—124.5 kN); PQ,=—4.0 kips (-17.8 kN);
FQy,=-21.0kips (-93.4 kN).

Joint 8: 3Fy=28.0- GO =0; GO = 28.0 kips (124.5 kN); ; 3F,=21.0-21.0=0.

Joint 9: 3Fy=-16.0-6.7-53+28.0=0; 2F,15.0-11.0-4.0=0.

7. Complete the computation
Compute the values in the last column of Table 2 and enter them as shown.

TRUSS ANALYSIS BY THE METHOD
OF SECTIONS

Using the method of sections, determine the forces in members BK and LM in Fig. 5a.

Calculation Procedure:

1. Draw a free-body diagram of one portion of the truss
Cut the truss at the plane aa (Fig. 6a), and draw a free-body diagram of the left part of the
truss. Assume that BK is tensile.
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2. Determine the magnitude and character of the first force
Take moments with respect to joint 4. Since each halt of the truss forms a 3-4-5 right tri-
angle, d =20(3/5) = 12 ft (3.7 m), M, = 19(20) - 6(10) + 12BK = 0, and BK = -26.7 kips
(-118.8 kN).

The negative result signifies that the assumed direction of BX is incorrect; the force is,
therefore, compressive.

3. Use an alternative solution

Alternatively, resolve BK (again assumed tensile) into its horizontal and vertical compo-
nents at joint 1. Take moments with respect to joint 4. (A force may be resolved into its
components at any point on its action line.) Then, 3M, = 19(20) + 20BK, = -16.0 kips
(-71.2 kN); BK =-16.0(5/3) =-26.7 kips (—118.8 kN).

4. Draw a second free-body diagram of the truss

Cut the truss at plane bb (Fig. 6b), and draw a free-body diagram of the left part. Assume
LM is tensile.

5. Determine the magnitude and character of the second force
Resolve LM into its horizontal and vertical components at joint 4. Take moments with
respect to joint 1: 2M; = 6(10 + 20) + 3(20) — 20LM,, = 0; LM, = 12.0 kips (53.4 kN);
LMy =12.0/2.25 = 3.3 kips (23.6 kN); LM = 13.1 kips (58.3 kN).

REACTIONS OF A THREE-HINGED ARCH

The parabolic arch in Fig 7 is hinged at 4, B, and C. Determine the magnitude and direc-
tion of the reactions at the supports
Calculation Procedure:

1. Consider the entire arch as a free body and take moments
Since a moment cannot be transmitted across a hinge, the bending moments at 4, B, and C
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are zero. Resolve the reactions R, and R (Fig. 7) into their horizontal and vertical com-
ponents.

Considering the entire arch 4BC as a free body, take moments with respect to 4 and C.
Thus SM, = 8(10) + 10(25) + 12(40) + 8(56) — 5(25.2) — T2R¢y— 10.8R; =0, or 72R
+10.8Rcy = 1132, Eq. a. Also, 2Mc= 72R;;— 10.8R ;5 — 8(62) 10(47) — 12(32) — 8(16)
—5(14.4)=0, or 72R ;;r— 10.8R ;= 1550, Eq. b.

2. Consider a segment of the arch and take moments

Considering the segment BC as a free body, take moments with respect to B. Then My =
8(16) +5(4.8) - 32Rcpy+ 19.2R4 =0, or 32Rcy— 19.2R-y =152, Eq. c.

3. Consider another segment and take moments

Considering segment 4B as a free body, take moments with respect to B: ZMy 40R ., —
30R 45— 8(30) — 10(15) = 0, or 40R ;;» — 30R 4z = 300, Eq. d.

4. Solve the simultaneous moment equations

Solve Eqs. b and d to determine R,. solve Egs. a and c to determine Rc. Thus R,y =
24.4 kips (108.5 kN); R ; = 19.6 kips (87.2 kN); R¢p = 13.6 kips (60.5 kN); Ry =
14.6 kips (64.9 kN). Then R, = [(24.4)> + (19.6)*1%° = 31.3 kips (139.2 kN). Also R. =
[(13.6)> + (14.6)%1°% = 20.0 kips (8.90 kN). And 6, = arctan (24.4/19.6) = 51°14’;
6. = arctan (13.6/14.6) = 42°58'.

LENGTH OF CABLE CARRYING
KNOWN LOADS

A cable is supported at points P and Q (Fig. 8a) and carries two vertical loads, as shown.
If the tension in the cable is restricted to 1800 Ib (8006 N), determine the minimum length
of cable required to carry the loads.
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Calculation Procedure:

1. Sketch the loaded cable
Assume a position of the cable, such as PRSQ (Fig. 8a). In Fig. 8b, locate points P’ and
Q', corresponding to P and Q, respectively, in Fig. 8a.

2. Take moments with respect to an assumed point

Assume that the maximum tension of 1800 1b (8006 N) occurs in segment PR (Fig. 8).
The reaction at P, which is collinear with PR, is therefore 1800 1b (8006 N). Compote the
true perpendicular distance m from Q to PR by taking moments with respect to Q. Or
2 Mgy = 1800m — 500(35) — 750(17) = 0; m = 16.8 ft (5.1 m). This dimension establishes
the true position of PR.

3. Start the graphical solution of the problem

In Fig. 8b, draw a circular arc having Q' as center and a radius of 16.8 ft (5.1 m). Draw a
line through P’ tangent to this arc. Locate R’ on this tangent at a horizontal distance of
15 ft (4.6 m) from P’.

4. Draw the force vectors

In Fig. 8¢, draw vectors ab, be, and cd to represent the 750-1b (3336-N) load, the 500-1b
(2224-N) load, and the 1800-1b (8006-N) reaction at P, respectively. Complete the trian-
gle by drawing vector da, which represents the reaction at Q.

5. Check the tension assumption
Scale da to ascertain whether it is less than 1800 Ib (8006 N) This is found to be so, and
the assumption that the maximum tension exists in PR is validated.
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6. Continue the construction
Draw a line through Q' in Fig. 8b parallel to da in Fig. 8c. Locate S’ on this line at a hori-
zontal distance of 17 ft (5.2 m) from Q.

7. Complete the construction

Draw R'S’ and db. Test the accuracy of the construction by determining whether these
lines are parallel. )

8. Determine the required length of the cable

Obtain the required length of the cable by scaling the lengths of the segments to Fig. 8b.
Thus P’R' =17.1 ft (5.2 m); R'S’ = 18.4 ft (5.6 m); S'Q’ = 17.6 ft (5.4 m); and length of
cable =53.1 ft (16.2 m).

PARABOLIC CABLE TENSION AND LENGTH

A suspension bridge has a span of 960 ft (292.61 m) and a sag of 50 ft (15.2 m). Each ca-
ble carries a load of 1.2 kips per linear foot (kips/lin ft) (17,512.68 N/m) uniformly dis-
tributed along the horizontal. Compute the tension in the cable at midspan and at the sup-
ports, and determine the length of the cable.

Calculation Procedure:

1. Compute the tension at midspan

A cable carrying a load uniformly distributed along the horizontal assumes the form of a
parabolic arc. In Fig. 9, which shows such a cable having supports at the same level, the
tension at midspan is H = wL?(8d), where H = midspan tension, kips (kN); w = load on a
unit horizontal distance, kips/lin ft (kN/m); L = span, ft (m); d = sag, ft (m). Substituting
yields H = 1.2(960)*/[8(50)] = 2765 kips (12,229 kN).

A& B

d SN~

c

LLLL L L L

Unit load = w

(a)

™

A

c
{b) —>H

FIGURE 9 Cable supporting load uniformly distributed along horizontal.
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2. Compute the tension at the supports
Use the relation 7= [H? + (wL/2)?]°5, where T = tension at supports, kips (kN), and the
other symbols are as before. Thus, T = [(2765% + (1.2 x 480]%5 = 2824 kips (12,561 kN).

3. Compute the length of the cable
When d/L is 1/20 or less, the cable length can be approximated from S = L + 84%/(3L),
where § = cable length, ft (m). Thus, S = 960 + 8(50)%/[3(960)] = 966.94 ft (294.72 m).

CATENARY CABLE SAG AND DISTANCE
BETWEEN SUPPORTS

A cable 500 ft (152.4 m) long and weighing 3 pounds per linear foot (Ib/lin ft) (43.8
N/m) is supported at two points lying in the same horizontal plane. If the tension at the
supports is 1800 Ib (8006 N), find the sag of the cable and the distance between the
supports.

Calculation Procedure:

1. Compute the catenary parameter

A cable of uniform cross section carrying only its own weight assumes the form of a cate-
nary. Using the notation of the previous procedure, we find the catenary parameter ¢ from
d+ ¢ = T/w=1800/3 =600 ft (182.9 m). Then ¢ = [(d + ¢)2 — (§/2)*]°% = [(600)°1°5 -
(250)%1%5 = 545.4 £t (166.2 m).

2. Compute the cable sag

Since d + ¢ = 600 ft (182.9 m) and ¢ = 545.4 ft (166.2 m), we know d = 600 ~ 545.4 = 54.6
ft (16.6 m).

3. Compute the span length
Use the relation L =2c¢ In (d + ¢ + 0.55)/c, or L =2(545.5) In (600 + 250) 545.4 =484.3 ft
(147.6 m).

STABILITY OF A RETAINING WALL

Determine the factor of safety (FS) against sliding and overturning of the concrete retain-
ing wall in Fig 10. The concrete weighs 150 Ib/ft® (23.56 kN/m?, the earth weighs 100
Ib/ft® (15.71 kN/m?), the coefficient of friction is 0.6, and the coefficient of active earth
pressure is 0.333.

Calculation Procedure:

1. Compute the vertical loads on the wall
Select a 1-ft (304.8-mm) length of wall as typical of the entire structure. The horizontal
pressure of the confined soil varies linearly with the depth and is represented by the trian-
gle BGF in Fig. 10

Resolve the wall into the elements AECD and AEB; pass the vertical plane BF through
the soil. Calculate the vertical loads, and locate their resultants with respect to the toe C.
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Thus W, = 15(1)(150) = 2250 Ib (10,008
N); W, = 0.5(15)(5)(150) = 5625; W5 =
0.5(15)(5)(100) = 3750. Then SW =
11,625 b (51,708 N). Also, x; = 0.5 ft; x,
=1+0333(5)=2.67ft (0.8l m);x;=1+
0.667(5) =433 ft (1.32 m).
2. Compute the resultant
horizontal soil thrust
Compute the resultant horizontal thrust 7
T Ib of the soil by applying the coefficient
-1 of active earth pressure. Determine the
location of T. Thus BG = 0.333(15)(100)
y = 500 lb/lin f& (7295 N/m); T =
0.5(15)(500) = 3750 Ib (16,680 N); y =
G 0.333(15) =5 ft (1.5 m).
3. Compute the maximum
X2 frictional force preventing
6 sliding
(1.8m) The maximum frictional force F,, =
(W), where p = coefficient of friction.
FIGURE 10 Or F,, = 0.6(11,625) = 6975 1b (31,024.8
N).

15'
(4.6 m)

Xy

4. Determine the factor of safety against sliding
The factor of safety against sliding is FSS = F,, /T = 6975/3750 = 1.86.

5. Compute the moment of the overturning and stabilizing forces
Taking moments with respect to C, we find the overturning moment = 3750(5) = 18,750
Ib-ft (25,406.3 N-m). Likewise, the stabilizing moment = 2250(0.5) + 5625(2.67) +
3750(4.33) = 32,375 1b-ft (43,868.1 N'm).

6. Compute the factor of safety against overturning

The factor of safety against overturning is FSO = stabilizing moment, Ib-ft (N-m)/over-
turning moment. lb-ft (N-m) = 32,375/18,750 = 1.73.

ANALYSIS OF A SIMPLE SPACE TRUSS

In the space truss shown in Fig. 11a, 4 lies in the xy plane, B and C lie on the z axis, and
D lies on the x axis. A horizontal load of 4000 1b (17,792 N) lying in the xy plane is ap-
plied at 4. Determine the force induced in each member by applying the method of joints,
and verify the results by taking moments with respect to convenient axes.

Calculation Procedure:

1. Determine the projected length of members
Let d,, d, and d, denote the length of a member as projected on the x, y, and x axes, re-
spectively. Record in Table 3 the projected lengths of each member. Record the remain-

ing values as they are obtained.
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2. Compute the true length of each member
Use the equation d = (dZ + d? + d})°3, where d = the true length of a member.

3. Compute the ratio of the projected length to the true length
For each member, compute the ratios of the three projected lengths to the true length. For
example, for member AC, d,/d = 6/12.04 = 0.498.

These ratios are termed direction cosines because each represents the cosine of the an-
gle between the member and the designated axis, or an axis parallel thereto.

Since the axial force in each member has the same direction as the member itself, a di-
rection cosine also represents the ratio of the component of a force along the designated
axis to the total force in the member. For instance, let AC denote the force in member AC,
and let AC, denote its component along the x axis. Then AC,/AC = d,/d = 0.249.

4. Determine the component forces
Consider joint 4 as a free body, and assume that the forces in the three truss members are

TABLE 3 Data for Space Truss (Fig, 11)

Member AB AC AD

d,, ft (m) 3 0.91) 3 0.91) 10 (3.03)

d,, ft (m) 10 (3.0 10 3.0) 10 3.0

d,, ft (m) 4 (1.2) 6 (1.8) 0 ()}

d, ft (m) 11.18 (3.4 1204 (3.7 14.14 4.3)
d./d 0.268 0.249 0.707

d,ld 0.894 0.831 0.707

d,/id 0.358 0.498 0

Force, Ib (N) | -3830 (-17,036) —2750 (-12,232) +8080 (+35,940)
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tensile. Equate the sum of the forces along each axis to zero. For instance, if the truss
members are in tension, the x components of these forces are directed to the left, and 2.F,
=4000-A4B, - AC,— AD,=0.

Express each component in terms of the total force to obtain ZF, = 4000 — 0.2684B —
0.2494C - 0.7074D = 0; 3F, = —0.8944B — 0.8314C — 0.7074D = 0; 3F, = 0.3584B
—0.4984C=0.

5. Solve the simultaneous equations in step 4 to evaluate the
forces in the truss members

A positive result in the solution signifies tension; a negative result, compression. Thus,
AB = 3830-Ib (17,036-N) compression; AC = 2750-1b (12,232-N) compression; and AD =
8080-1b (35,940-N) tension. To verify these results, it is necessary to select moment axes
yielding equations independent of those previously developed.

6. Resolve the reactions into their components

In Fig. 115, show the reactions at the supports B, C, and D, each reaction being numeri-
cally equal to and collinear with the force in the member at that support. Resolve these re-
actions into their components.

7. Take moments about a selected axis

Take moments with respect to the axis through C parallel to the x axis. (Since the x com-
ponents of the forces are parallel to this axis, their moments are zero.) Then ZM(, =
104B,, — 64D, = 10(0.894)(3830) — 6(0.707)(8080) = 0.

8. Take moments about another axis
Take moments with respect to the axis through D parallel to the x axis. So SMp, =44B, -
64C, = 4(0.894)(3830) — 6(0.831)(2750) = 0.

The computed results are thus substantiated.

ANALYSIS OF A COMPOUND SPACE TRUSS

The compound space truss in Fig. 124 has the dimensions shown in the orthographic pro-
jections, Fig. 12b and c. A load of 5000 Ib (22,240 N), which lies in the xy plane and
makes an angle of 30° with the vertical, is applied at 4. Determine the force induced in
each member, and verify the results.

Calculation Procedure:

1. Compute the true length of each truss member

Since the truss and load system are symmetric with respect to the xy plane, the internal

forces are also symmetric. As one component of an internal force becomes known, it will

be convenient to calculate the other components at once, as well as the total force.
Record in Table 4 the length of each member as projected on the coordinate axes. Cal-

culate the true length of each member, using geometric relations.

2. Resolve the applied load into Its x and y components
Use only the absolute values of the forces. Thus P, = 5000 sin 30° = 2500 1b (11,120 N);
P, = 5000 cos 30° = 4330 1b (19,260 N).

3. Compute the horizontal reactions
Compute the horizontal reactions at D and at line CC’ (Fig. 12b). Thus M = 4330(12)
—2500(7) — 10H, = 0; H; = 3446 Ib (15,328 N); H, = 3446 — 2500 = 946 1b (4208 N).
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TABLE 4 Data for Space Truss (Fig. 12)

Member AB AC BC BD BB’

d,, ft (m) 0 (0) 12 (37) 12 (3.7 1237 0(0)

d,, ft (m) 720 72D 0 (0) 10 (3.0) 0O

d,, ft (m) 4(12) 4 (12) 0 (0) 4(12) 8 (24)
d, ft. (m) 8.06 (2.5) 14.46 (4.4) 12.00 (3.7) 16.12 (4.9) 8 2.4)
F,b®N) 0 (0) 1,250 (5,560) 1,723 (7,664) 1,723 (7,664) 0
F,,Ib(N) 1,436 (6,367) 729 (3,243) 0 (0) 1,436 (6,367) 0 (0)
F,,Ib(N) 821 (3,652) 417 (1,655) 0 (0) 574 (2,553) 1,395 (6,205)

F,Ib(N) +1,653 (+7,353) +1,506 (+6,699)—1,723 (=7,664) +2,315 (+10,297) —1,395 (~6,205)

4. Compute the vertical reactions
Consider the equilibrium of joint D and the entire truss when you are computing the verti-
cal reactions. In all instances, assume that an unknown internal force is tensile. Thus, at
joint D: 3F, = —H| + 2BD, = 0; BD, = 1723-1b (7664-N) tension; BD, = 1723(10/12) =
1436 1b (6387 N); likewise, ZF, =¥, —2BD, =V, —2(1436) = 0; V', =2872 b (12,275 N).
For the entire truss, ZF, =V, + ¥, — 4330 =0; V, = 1458 Ib (6485 N).
The z components of the reactions are not required in this solution. Thus, the remain-
ing calculations for BD are BD, = 1723(4/12) = 574 b (2553 N); BD = 1723(16.12/12) =
2315 1b (10,297 N).

5. Compute the unknown forces by using the equilibrium of a joint
Calculate the forces AC and BC by considering the equilibrium of joint C. Thus 3F, =
0.5H, + AC, + BC =0, Eq. a; 3F, = 0.5V, — AC, =0, Eq. b. From Eq. b, AC, = 729-1b
(3243-N) tension. Then AC, = 729(12/7) = 1250 Ib (5660 N). From Eq. a, BC = 1723-1b
(7664-N) compression. Then AC, = 729(4/7) = 417 1b (1855 N); AC = 729(14.46/7) =
1506 1b (6699 N).

6. Compute another set of forces by considering joint equilibrium
Calculate the forces AB and BB’ by considering the equilibrium of joint B. Thus 3F, =
BD,—AB,=0; AB, = 1436-1b (6387-N) tension; AB, = 1436(4/7) = 821 Ib (3652 N); AB =
1436 (8.06/7) = 1653 1b (7353 N); F, = —4B, - BD, — BB’ = 0; BB' = 1395-1b (6205-N)
compression.

All the internal forces are now determined. Show in Table 4 the tensile forces as posi-
tive, and the compressive forces as negative.

7. Check the equilibrium of the first joint considered

The first joint considered was 4. Thus F, = —24C, + 2500 = —2(1250) + 2500 = 0, and
2F,=24B,+24C,— 4330 = 2(1436) + 2(729) — 4330 = 0. Since the summation of forces
for both axes is zero, the joint is in equilibrium.

8. Check the equilibrium of the second joint

Check the equilibrium of joint B by taking moments of the forces acting on this joint with
respect to the axis through A parallel to the x axis (Fig. 12¢). Thus 2M,, =-7BB’ + 7BD,
+4BD, =-7(1395) + 7(574) + 4(1436) = 0.

9. Check the equilibrium of the right-hand part of the structure

Cut the truss along a plane parallel to the yz plane. Check the equilibrium of the right-
hand part of the structure. Now 2F, =~2BD, + 2BC — 2AC, + 2500 = -2(1723) + 2(1723)
—2(1250) + 2500 = 0, and ZF, = 2BD, + 24C, — 4330 = 2(1436) + 2(729) — 4330 = 0. The
calculated results are thus substantiated in these equations.
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GEOMETRIC PROPERTIES OF AN AREA

Calculate the polar moment of inertia of the area in F ig. 13: (a) with respect to its cen-
troid, and (b) with respect to point 4.

Caiculation Procedure:

1. Establish the area axes
Set up the horizontal and vertical coordinate axes u and y, respectively.

2. Divide the area into suitable elements

Using the American Institute of Steel Construction (AISC) Manual, obtain the properties
of elements 1, 2, and 3 (Fig. 13) after locating the horizontal centroidal axis of each ele-
ment. Thus y, = %(6) = 4 in (101.6 mm); y, = 2 in (50.8 mm); y; = 0.424(8) = 3.4 in (86.4
mm).

3. Locate the horizontal centroidal axis of the entire area

Let x denote the horizontal centroidal axis of the entire area. Locate this axis by comput-
ing the statical moment of the area with respect to the  axis. Thus

Moment, in?
Element Area, in? (cm?) x Amm, in(cm) = (cm?)
1 05(6)16)= 48  (309.7) 4 (102) = 192 (3,158.9)
2 416)= 64  (412.9) 8 (203 = 512 (8,381.9)
3 1.57(82 = 100.5 (648.4) 134 (349) = 1,347 (22,045.6)

Total 2125 (1,351.0) 2,051 (33,586.4)
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Then y,, =2051/212.5 =9.7 in (246.4 mm). Since the area is symmetric with respect to
the y axis, this is also a centroidal axis. The intersection point G of the x and y axes is,
therefore, the centroid of the area.

3. Compute the distance between the centroidal axis and the
reference axis

Compute %, the distance between the horizontal centroidal axis of each element and the x
axis. Only absolute values are required. Thus k; =9.7 - 4.0 =5.7 in (1448 mm); k,=9.7 -
8.0=1.7 in (43.2 mm); k3 = 13.4 - 9.7 = 3.7 in (94.0 mm).

5. Compute the moment of inertia of the entire area—x axis

Let I, denote the moment of inertia of an element with respect to its horizontal centroidal
axis and 4 its area. Compute the moment of inertia I, of the entire area with respect to the
x axis by applying the transfer equation I, 3.1, + 3 4K2. Thus

Element I, in* (dm*) AR, in* (dm*)

1 15(16)(6)° = 96 (0.40) 48(5.72 = 1560 (6.49)
2 Vi(16) 4P = 85(0.35) 64(1.7)2 = 185 (0.77)
3 0.110(8)* = 451 (1.88) 100.5(3.7)* = 1376 (5.73)
Total 632 (2.63) 3121 (12.99)

Then, I, = 632 + 3121 = 3753 in* (15.62 dm*).

6. Determine the moment of inertia of the entire area—y axis
For this computation, subdivide element 1 into two triangles having the y axis as a base.
Thus

Element 1 about y axis, in* (dm*)
1 2AY)6)BP = 512 (2.13)
2 V12(4)(16)* = 1365 (5.68)
3 15(0.785)(8)* = 1607 (6.89)

I,= 3484 (14.5)

7. Compute the polar moment of inertia of the area
Apply the equation for the polar moment of inertia J; with respect to G: Jg = I, + I, =
3753 + 3484 = 7237 in* (30.12 dm*¥).

8. Determine the moment of inertia of the entire area—w axis

Apply the equation in step 5 to determine the moment of inertia I,, of the entire area with
respect to the horizontal axis w through 4. Thus £ =15.0-9.7=15.3 in (134.6 mm); /,,=
I+ AR? = 3753 + 212.5(5.3)* = 9722 in* (40.46 dm*).

9. Compute the polar moment of inertia
Compute the polar moment of inertia of the entire area with respect to 4. ThenJ, =1, + 1,
=9722 + 3484 = 13,206 in* (54.97 dm*).



1.26 STRUCTURAL STEEL ENGINEERING AND DESIGN

PRODUCT OF INERTIA OF AN AREA

Calculate the product of inertia of the isosceles trapezoid in Fig. 14 with respect to the
rectangular axes u and v.

v Calculation Procedure:

5" (127 mm)

T 1. Locate the centroid of
the trapezoid

Using the AISC Manual or another
suitable reference, we find 4 = cen-
- troid distance from the axis (Fig. 14)
(2286 ]“i’ 0 ” = (93)[(2 x 5 + 10)/(5 + 10)] g in

h (101.6 mm).

L. u 2. Compute the area and

° 0" product of inertia P,,

{254 mm) The area of the trapezoid is A =
FIGURE 14 Y5(9)(5 + 10) = 67.5 in? (435.5 cm?).
Since the area is symmetrically dis-
posed with respect to the y axis, the
product of inertia with respect to the
x and y axes is P, = 0.

3. Compute the product of inertia by applying the transfer
equation

The transfer equation for the product of inertia is P, = P, + 4x,,y,,, where x,, and y,, are
the coordinates of O with respect to the centroidal x and y axes, respectively. Thus P, =
0+ 67.5(-5)(—4) = 1350 in* (5.6 dm*).

PROPERTIES OF AN AREA WITH RESPECT
TO ROTATED AXES

In Fig 15, x and y are rectangular axes through the centroid of the isosceles triangle; x’
and y’ are axes parallel to x and y, respectively; x” and y” are axes making an angle of 30°
with x” and y’, respectively. Compute the moments of inertia and the product of inertia of
the triangle with respect to the x”and y” axes.

Calculation Procedure:

1. Compute the area of the figure

The area of this triangle = 0.5(base)(altitude) = 0.5(8)(9) = 36 in? (232.3 cm?).

2. Compute the properties of the area with respect to the

x and y axes

Using conventional moment-of-inertia relations, we find I, = bd?/36 = 8(9)3/36 = 16? in*
(0.67 dm*); I, = b*d/48 = (8)3(9)/48 = 96 in* (0.39 dm*). By symmetry, the product of in-
ettia with respect to the x and y axes is P,, = 0.



STATICS, STRESS AND STRAIN, AND FLEXURAL ANALYSIS 1.27

" y
\
\ [1]
y \ »?
\ 7~
\ 7~
Xm* 7" \
(1778 mm) //Xe =30° .
= X
Ol
ym - 6"
9" (1524 mm)
(2286 mm)
o = X
(203.2 mm)
FIGURE 15

3. Compute the properties of the area with respect to the
x"and y’ axes
Using the usual moment-of-mertla relations, we find I, = I + Ay%, = 162 + 36(6)2 = 1458
in* (6.06 dm*); I, = {‘V + Ax2, = 96 + 36(7)? = 1660 m“ . 74 dm*); Py =P, + 4Ax,,y, =0
+36(7)(6) = 1512 in* (6.29 dm ).
4. Compute the properties of the area with respect to the
x”and y’ axes
For the x” axis, I» = I, cos?0 + I, sin?@ — P,.,, sin 20 = 1458(0.75) + 1860(0.25) —
1512(0.866) = 249 in* (1.03 dm*).

For the y” axis, I,»= I,. sin*§ + I, cos?8 + P,.,, sin 20 = 1458(0.25) + 1860(0.75) +
1512(0.866) = 3069 1n4 (12 77 dm“)

The product of inertia is P, P,y cos 20+ [(I,,— I,)/2] sin 20 = 1512(0.5) + 1(1458
— 1860)/2]0.866 = 582 in* (2.42 dm“).

Analysis of Stress and Strain

The notational system for axial stress and strain used in this section is as follows: 4 =
cross-sectional area of a member; L = original length of the member; Al = increase in
length; P = axial force; s = axial stress; € = axial strain = Al/L; E = modulus of elasticity
of material = s/e. The units used for each of these factors are given in the calculation pro-
cedure. In all instances, it is assumed that the induced stress is below the proportional lim-
it. The basic stress and elongation equations used are s = P/4; Al = sL/E = PL/(AE). For
steel, E = 30 x 10° Ib/in? (206 GPa).
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STRESS CAUSED BY AN AXIAL LOAD

A concentric load of 20,000 b (88,960 N) is applied to a hanger having a cross-sectional
area of 1.6 in? (1032.3 mm?). What is the axial stress in the hanger?

Calculation Procedure:

1. Compute the axial stress

Use the general stress relation s = P/4 = 20,000/1.6 = 12,500 1b/in? (86,187.5 kPa).
Related Calculations: Use this general stress relation for a member of any

cross-sectional shape, provided the area of the member can be computed and the member

is made of only one material.

DEFORMATION CAUSED BY AN
AXIAL LOAD

A member having a length of 16 ft (4.9 m) and a cross-sectional area of 2.4 in? (1548.4
mm?) is subjected to a tensile force of 30,000 1b (133.4 kN). If E = 15 x 10° 1b/in? (103
GPa), how much does this member elongate?

Calculation Procedure:

1. Apply the general deformation equation
The general deformation equation is Al = PL/(AE) = 30,000(16)(12)/[2.4(15 x 1061 =
0.16 in (4.06 mm).

Related Calculations: Use this general deformation equation for any material
whose modulus of elasticity is known. For composite materials, this equation must be al-
tered before it can be used.

DEFORMATION OF A BUILT-UP MEMBER

A member is built up of three bars placed end to end, the bars having the lengths and
cross-sectional areas shown in Fig. 16. The member is placed between two rigid surfaces
and axial loads of 30 kips (133 kN) and 10 kips (44 kN) are applied at 4 and B, respec-
tively. If E = 2000 kips/in® (13,788 MPa), determine the horizontal displacement of 4 and
B.

Calculation Procedure:

1. Express the axial force in terms of one reaction

Let R, and Ry denote the reactions at the left and right ends, respectively. Assume that
both reactions are directed to the left. Consider a tensile force as positive and a compres-
sive force as negative. Consider a deformation positive if the body elongates and negative
if the body contracts.
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Express the axial force P in each bar in terms of R, because both reactions are as-
sumed to be directed toward the left. Use subscripts corresponding to the bar numbers
(Fig. 16). Thus, P, =R, P, =~30; P, =R; —40.

2. Express the deformation of each bar in terms of the reaction
and modulus of elasticity

Thus, Al, = R;(36)/(2.0E) = 18RL/E; Al, = (R; — 30)(48)/(1.6E) = (30RL — 900)/E; Al; =
(R, - 40)24/(1.2E) = (20R, — 800)/E.

3. Solve for the reaction

Since the ends of the member are stationary, equate the total deformation to zero, and
solve for R;. Thus Al, = (68R; — 1700)/E = 0; R; = 25 kips (111 kN). The positive result
confirms the assumption that R; is directed to the left.

4. Compute the displacement of the points
Substitute the computed value of R; in the first two equations of step 2 and solve for the
displacement of the points 4 and B. Thus A/, = 18(25)/2000 = 0.225 in (5.715 mm); Al, =
[30(25) — 900)/2000 = -0.075 in (—1.905 mm).

Combining these results, we find the displacement of 4 = 0.225 in (5.715 mm) to the
right; the displacement of B = 0.225 — 0.075 = 0.150 in (3.81 mm) to the right.

5. Verify the computed resulits

To verify this result, compute Ry and determine the deformation of bar 3. Thus %Fy =
— R; + 30 + 10 — Rg = 0; Rg = 15 kips (67 kN). Since bar 3 is in compression,
Al = —15(24)/[1.2(2000)] = —-0.150 in (-3.81 'mm). Therefore, B is displaced 0.150 in
(3.81 mm) to the right. This verifies the result obtained in step 4.

REACTIONS AT ELASTIC SUPPORTS

The rigid bar in Fig. 17a is subjected to a load of 20,000 1b (88,960 N) applied at D. It is
supported by three steel rods, 1, 2, and 3 (Fig. 17a). These rods have the following rela-
tive cross-sectional areas: 4, = 1.25, 4, = 1.20, 4; = 1.00. Determine the tension in each
rod caused by this load, and locate the center of rotation of the bar.

Calculation Procedure:

1. Draw a free-body diagram; apply the equations of equilibrium
Draw the free-body diagram (Fig. 17b) of the bar. Apply the equations of equilibrium:
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3Fy Py + P, + P;—20,000=0, or P, + P, + P; = 20,000, Eq. a; also, 3M.= 16P, + 10P,
—20,000(12) = 0, or 16P, + 10P, = 240,000, Eq. b.
2. Establish the relations between the deformations
Selecting an arbitrary center of rotation O, show the bar in its deflected position (Fig.
17¢). Establish the relationships among the three deformations. Thus, by similar triangles,
(Al — AL)Y/(AL - Al) = 6/10, or 10Al, — 16Al, + 6AL =0, Eq. c.
3. Transform the deformation equation to an axial-force equation
By substituting axial-force relations in Eq. ¢, the following equation is obtained:
10P,(5)/(1.25E) — 16P(9)/(1.20E) + 6P5(7.5)/E = 0, or 40P, — 120P, + 45P, = 0, Eq. c'.
4. Solve the simultaneous equations developed
Solve the simultaneous equations a, b, and ¢’ to obtain P, = 11,810 1b (52,530 N); P, =
5100 Ib (22,684 N); Py = 3090 Ib (13,744 N).
5. Locate the center of rotation
To locate the center of rotation, compute the relative deformation of rods 1 and 2. Thus
Al =11,810(5)/(L.25E) = 47,240/E; Al, = 5100(9)/(1.20E) = 38,250/E."

In Fig. 17¢, by similar triangles, x/(x — 6) = Al;/Al, = 1.235; x =31.5 ft (9.6 m).
6. Verify the computed values of the tensile forces
Calculate the moment with respect to 4 of the applied and resisting forces. Thus M, =
20,000(4) = 80,000 lb-ft (108,400 N-m); M, = 5100(6) + 3090(16) = 80,000 Ib-ft
(108,400 N-m). Since the moments are equal, the results are verified.

ANALYSIS OF CABLE SUPPORTING
A CONCENTRATED LOAD

A cold-drawn steel wire % in (6.35 mm) in diameter is stretched tightly between two
points lying on the same horizontal plane 80 ft (24.4 m) apart. The stress in the wire is



STATICS, STRESS AND STRAIN, AND FLEXURAL ANALYSIS 1.31

< L ' 50,000 Ib/in? (344,700 kPa). A load of 200
1b (889.6 N) is suspended at the center of
the cable. Determine the sag of the cable
and the final stress in the cable. Verify that
l the results obtained are compatible.

P

[-%

FIGURE 18 .
Calculation Procedure:

1. Derive the stress and strain
relations for the cable
With reference to Fig. 18, L = distance between supports, ft (m); P = load applied at cen-
ter of cable span, b (N); d = deflection of cable center, ft (m); € = strain of cable caused
by P; s, and s, = initial and final tensile stress in cable, respectively, 1b/in? (kPa).

Refer to the geometry of the deflection diagram. Taking into account that d/L is ex-
tremely small, derive the following approximations: s, = PL/(44d), Eq. a; € = 2(d/L)?, Eq.
b.

2. Relate stress and strain
Express the increase in stress caused by P in terms of €, and apply the above two equa-
tions to derive 2E(d/L)? + s,(d/L) = P/(44), Eq. c.

3. Compute the deflection at the center of the cable
Using Eq. ¢, we get 2(30)(10)%(d/L)? + 50,000d/L = 200/[4(0.049)], so d/L =0.0157 and .".
d=10.0157(80) = 1.256 ft (0.382 m).

4. Compute the final tensile stress
Write Eq. a as 5, = [PA4A))/(d/L) = 1020/0.0157 = 65,000 1b/in (448,110 kPa).

8. Verify the results computed

To demonstrate that the results are compatible, accept the computed value of d/L as cor-
rect. Then apply Eq. b to find the strain, and compute the corresponding stress. Thus € =
2(0.0157)2=4.93 x 10*; 5, =5, + Ee = 50,000 + 30 x 106 x 4,93 x 10~ = 64,800 1b/in?
(446,731 kPa). This agrees closely with the previously calculated stress of 65,000 Ib/in®
(448,110 kPa).

DISPLACEMENT OF TRUSS JOINT

In Fig. 194, the steel members 4C and BC both have a cross-sectional area of 1.2 in? (7.7
cm?). If a load of 20 kips (89.0 kN) is suspended at C, how much is joint C displaced?

Calculation Procedure:

1. Compute the length of each member and the tensile forces
Consider joint C as a free body to find the tensile force in each member. Thus L, =192
in (487.7 ¢cm); Ly = 169.7 in (431.0 cm); PAC = 14,640 1b (65,118.7 N); Pg-= 17,930 Ib
(79,752.6 N).

2. Determine the elongation of each member

Use the relation Al = PL/(AE). Thus Al = 14,640(192)/[1.2(30 x 10%)] = 0.0781 in
(1.983 mm); Alpc = 17,930(169.7)/[1.2(30 x 10%)] = 0.0845 in (2.146 mm).

3. Construct the Williott displacement diagram
Selecting a suitable scale, construct the Williott displacement diagram as follows: Draw
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(Fig. 19b) line Ca parallel to member AC, with Ca = 0.0781 in (1.98 mm). Similarly,
draw Cb parallel to member BC, with Cb = 0.0845 in (2.146 mm).

4. Determine the displacement
Erect perpendiculars to Ca and Cb at a and b, respectively. Designate the intersection
point of these perpendiculars as C'.

Line CC’ represents, in both magnitude and direction, the approximate displacement
of joint C under the applied load. Scaling distance CC’ to obtain the displacement shows
that the displacement of C = 0.134 in (3.4036 mm).

AXIAL STRESS CAUSED BY IMPACT LOAD

A body weighing 18 1b (80.1 N) falls 3 ft (0.9 m) before contacting the end of a vertical
steel rod. The rod is 5 ft (1.5 m) long and has a cross-sectional area of 1.2 in? (7.74 cm?).
If the entire kinetic energy of the falling body is absorbed by the rod, determine the stress
induced in the rod.

Calculation Procedure:

1. State the equation for the induced stress
Equate the energy imparted to the rod to the potential energy lost by the falling body:
s=(PIA){1 + [1 + 2ER/(LP/A)]*5), where h = vertical displacement of body, ft (m).

2. Substitute the numerical values
Thus, P/4 = 18/1.2 = 15 Ib/in? (103 kPa); A =3 ft (0.9 m); L = 5 ft (1.5 m); 2EA/(LP/A) =
2(30) x 109)3)/[5(15)] = 2,400,000. Then s = 23,250 Ib/in? (160,285.5 kPa).

Related Calculations: Where the deformation of the supporting member is neg-
ligible in relation to the distance 4, as it is in the present instance, the following approxi-
mation is used: s = [2PEh/(AL)]1%>.
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STRESSES ON AN OBLIQUE PLANE

A prism ABCD in Fig. 20a has the principal stresses of 6300- and 2400-1b/in? (43,438.5-
and 16,548.0-kPa) tension. Applying both the analytical and graphical methods, deter-
mine the normal and shearing stress on plane 4AE.

Calculation Procedure:

1. Compute the stresses, using the analytical method

A principal stress is a normal stress not accompanied by a shearing stress. The plane on
which the principal stress exists is termed a principal plane. For a condition of plane
stress, there are two principal planes through every point in a stressed body and these
planes are mutually perpendicular. Moreover, one principal stress is the maximum normal
stress existing at that point; the other is the minimum normal stress.

Let s, and s, = the principal stress in the x and y direction, respectively; s, = normal
stress on the plane making an angle @ with the y axis; s, = shearing stress on this plane.
All stresses are expressed in pounds per square inch (kilopascals) and all angles in de-
grees. Tensile stresses are positive; compressive stresses are negative.

Applying the usual stress equations yields s, = s, + (s, — 5,) cos? 6 s, = Ya(s, — 5,)
sin 26. Substituting gives s, = 2400 + (6300 — 2400)0 766% = 4690-1b/m2 (32 337.6- kPa)
tension, and s, = Y2(6300 — 2400)0 985 = 1920 Ib/in? (13,238.4 kPa).

2. Apply the graphical method of solution

Construct, in Fig. 205, Mohr’s circle of stress thus: Using a suitable scale, draw 04 =,

and OB =s,. Draw a circle having 4B as its diameter. Draw the radius CD making an an-

gle of 26 = 80° with AB. Through D, drop a perpendicular DE to AB. Then OF = s, and

ED =s,. Scale OF and ED to obtain the normal and shearing stresses on plane AE.
Related Calculations: The normal stress may also be computed from s, =

(5x +5,)0.5 + (s, — 5,)0.5 cos 26.

2400 Ib/in? (16,548 kPa) Sn
D
A 8
S
\29 :
~t——1"40° i o] o
6300 1b/in? 6300 ib/in? A CE 8
(43,439 kPa) (43,439 kPa) "
X sy = 24001b/in
D EC {16,548 kPa)
sy = 6300 Ib/inZ
2400 1b/in? {16,548 kPa) (43,439 kPa)
(a) Stresses on prism (b) Mohr's circle of stress

FIGURE 20
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EVALUATION OF PRINCIPAL STRESSES

The prism ABCD in Fig. 21a is subjected to the normal and shearing stresses shown. Con-
struct Mohr’s circle to determine the principal stresses at 4, and locate the principal
planes.

Calculation Procedure:

1. Draw the lines representing the normal stresses (Fig. 21b)
Through the origin O, draw a horizontal base line. Locate points £ and F such that OF =
8400 1b/in? (57,918.0 kPa) and OF = 2000 1b/in? (13,790.0 kPa). Since both normal
stresses are tensile, £ and F lie to the right of O. Note that the construction required here
is the converse of that required in the previous calculation procedure.

2. Draw the lines representing the shearing stresses

Construct the vertical lines EG and FH such that EG = 3600 Ib/in? (24,822.0 kPa), and
FH = -3600 1b/in? (-24,822.0 kPa).

3. Continue the construction

Draw line GH to intersect the base line at C.

4. Construct Mohr’s circle

Draw a circle having GH as diameter, intersecting the base line at 4 and B. Then lines OA4
and OB represent the principal stresses.

8400 1b/in?
y 2000 1b/in® (57,918 kPa)
SV' {13,790 kPa)
) G
A —»5 B
3600 Ib/in?
26 (24.822 kPO)
s,<—£ -?—»s, (o] ry F c 3 8
Se S
J -3600 I1b/in?
0 = ¢ (-24,822 kPa)
'S
H
S2 X
s, = 8400 Ib/in? (57,918 kPa) (b) Mohr's circle of stress
sz = 2000 1b/in? (13,790 kPa)
s, = 3600 Ib/in? (24,822 kPa) A
(o) Stresses on prism o
8400 Ib/in?
(57,918 kPa)
D

3600 Ib/in® tan @
(24,822 kPa tan 8)

{c) Free-body diagram of ADJ
FIGURE 21
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5. Scale the diagram
Scale 04 and OB to obtain f,,,, = 10,020 Ib/in? (69,087.9 kPa); f..., = 380 1b/in? (2620.1
kPa). Both stresses are tension.

6. Determine the stress angle
Scale angle BCG and measure it as 48°22'. The angle between the x axis, on which the
maximum stress exists, and the side AD of the prism is one-half of BCG.

7. Construct the x and y axes
In Fig. 21a, draw the x axis, making a counterclockwise angle of 24°11’ with AD. Draw
the y axis perpendicular thereto.

8. Verify the locations of the principal planes

Consider ADJ as a free body. Set the length AD equal to unity. In Fig. 21¢, since there is
no shearing stress on 4J, 3Fy = T cos 6 — 8400 — 3600 tan 6 = 0; T cos 6 = 8400 +
3600(0.45) = 10,020 1b/in? (69,087.9 kPa). The stress on 4J = T/4J = T cos 6 = 10,020
1b/in® (69,087.9 kPa).

HOOP STRESS IN THIN-WALLED CYLINDER
UNDER PRESSURE

A steel pipe 5 ft (1.5 m) in diameter and % in (9.53 mm) thick sustains a fluid pressure of
180 1b/in? (1241.1 kPa). Determine the hoop stress, the longitudinal stress, and the in-
crease in diameter of this pipe. Use 0.25 for Poisson’s ratio.

Calculation Procedure:

1. Compute the hoop stress

Use the relation s = pD/(2¢), where s = hoop or tangential stress, 1b/in? (kPa); p = radial
pressure, 1b/in? (kPa); D = internal diameter of cylinder, in (mm); ¢ = cylinder wall thick-
ness, in (mm). Thus, for this cylinder, s = 180(60)/[2(34)] = 14,400 1b/in? (99,288.0 kPa).
2. Compute the longitudinal stress

Use the relation s’ = pD/(4f), where s’ = longitudinal stress, i.e., the stress parallel to the
longitudinal axis of the cylinder, 1b/in? (kPa), with other symbols as before. Substituting
yields s” = 7200 1b/in? (49,644.0 kPa).

3. Compute the increase in the cylinder diameter
Use the relation AD = (D/E)(s — vs"), where v = Poisson’s ratio. Thus AD = 60(14,400 —
0.25 x 7200)/(30 x 10°) = 0.0252 in (0.6401 mm).

STRESSES IN PRESTRESSED CYLINDER

A steel ring having an internal diameter of 8.99 in (228.346 mm) and a thickness of % in
(6.35 mm) is heated and allowed to shrink over-an aluminum cylinder having an external
diameter of 9.00 in (228.6 mm) and a thickness of 2 in (12.7 mm). After the steel cools,
the cylinder is subjected to an internal pressure of 800 1b/in? (5516 kPa). Find the stresses
in the two materials. For aluminum, £ = 10 x 10 Ib/in? (6.895 x 107 kPa).
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Calculation Procedure:

1. Compute the radial pressure caused by prestressing

Use the relation p = 2AD/{D?*[1/(t,E,) + 1/(t,E,)]}, where p = radial pressure resulting
from prestressing, 1b/in? (kPa), with other symbols the same as in the previous calculation
procedure and the subscripts a and s referring to aluminum and steel, respectively. Thus,
P =2(0.01)/{9%[1/(0.5 x 10 x 10%) + 1/(0.25 >( 30 x 105)]) = 741 Ib/in? (5109.2 kPa).

2. Compute the corresponding prestresses

Using the subscripts 1 and 2 to denote the stresses caused by prestressing and internal
pressure, respectively, we find s,; = pD/(2t,), where the symbols are the same as in the
previous calculation procedure. Thus, s, = 741(9)/[2(0.5)] = 6670-1b/in? (45,989.7-kPa)
compression, Likewise, 55, = 741(9)/[2(0.25)]} = 13,340-1b/in? (91,979-kPa) tension.

3. Compute the stresses caused by internal pressure

Use the relation s,,/s,, = EJ/E, or, for this cylinder, s,/s,, = (30 x 10%)/(10 x 10%) = 3.
Next, compute s,, from ¢, ¢, = pD/2, or 5, = 800(9)/{2(0.5 + 0.25 x 3)] = 2880-
Ib/in? (19,857.6-kPa) tension. Also, s,, = 3(2880) = 8640-Ib/in? (59,572.8-kPa) tension.

4. Compute the final stresses

Sum the results in steps 2 and 3 to obtain the final stresses: s,; = 6670 — 2880 = 3790-
Ib/in? (26,132.1-kPa) compression; s;; = 13,340 + 8640 = 21,980-1b/in? (151,552.1-kPa)
tension.

5. Check the accuracy of the results

Ascertain whether the final diameters of the steel ring and aluminum cylinder are equal.
Thus, setting s” = 0 in AD = (D/E)(s — vs"), we find AD, =-3790(9)/(10 x 10%) =-0.0034
in (-0.0864 mm), D, = 9.0000 — 0.0034 = 8.9966 in (228.51 mm). Likewise, AD, =
21,980(9)/(30 x 106) = 0.0066 in (0.1676 mm), D, = 8.99 + 0.0066 = 8.9966 in (228.51
mm). Since the computed diameters are equal, the results are valid.

HOOP STRESS IN THICK-WALLED CYLINDER

A cylinder having an internal diameter of 20 in (508 mm) and an external diameter of 36
in (914 mm) is subjected to an internal pressure of 10,000 Ib/in? (68,950 kPa) and an ex-
ternal pressure of 2000 1b/in? (13,790 kPa) as shown in Fig. 22. Determine the hoop stress
at the inner and outer surfaces of the cylinder.

Calculation Procedure:

1. Compute the hoop stress at the inner surface of the cylmdar

Use the relation s; = [ p,(#? + r3) ~ 2p,73)/(r3 — r]), where s; = hoop stress at inner surface,
1b/in? (kPa), P = 1ntema1 pressure, 1b/in? (kPa); r; = mtema] radius, in (mm); », = external
radius, in (mm); p, = external pressure, Ib/in? (kPa). Substituting gives s, = [10,000(100 +
324) — 2(2000)(324))/(324 — 100) = 13,100-1b/in? (90,324.5-kPa) tension.

2. Compute the hoop stress at the outer cylinder surface

Use the relation s, = [2p,#7 — p2(r] + #2))/(r3 — r}), where the symbols are as before. Sub-
stituting gives s, = [2(10,000)(100) — 2000(100 + 324))/(324 — 100) = 5100-lb/in®
(35,164.5-kPa) tension.
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FIGURE 22 Thick-walled cylinder under internal and exter-
nal pressure.

g fut—

py = 10,000 Ib/in? (68,950 kPa)
p2= 2000 Ib/in? (13,790 kPa)

3. Check the accuracy of the results
Use the relation s,7, — sor, = [(r — r1)/(ry + r)I(p1#1 + Por2). Substituting the known val-
ues verifies the earlier calculations.

THERMAL STRESS RESULTING FROM
HEATING A MEMBER

A steel member 18 ft (5.5 m) long is set snugly between two walls and heated 80°F
(44.4°C). If each wall yields 0.015 in (0.381 mm), what is the compressive stress in the
member? Use a coefficient of thermal expansion of 6.5 x 107%/°F (1.17 x 1075/°C) for
steel.

Calculation Procedure:

1. Compute the thermal expansion of the member without
restraint

Replace the true condition of partial restraint with the following equivalent conditions:
The member is first allowed to expand freely under the temperature rise and is then com-
pressed to its true final length.

To compute the thermal expansion without restraint, use the relation AL = cLAT,
where ¢ = coefficient of thermal expansion, /°F (/°C); AT = increase in temperature, °F
(°C); L = original length of member, in (mm); AL = increase in length of the member, in
(mm). Substituting gives AL = 6.5(107°)(18)(12)(80) = 0.1123 in (2.852 mm).

2. Compute the linear restraint exerted by the walls

The walls yield 2(0.015) = 0.030 in (0.762 mm). Thus, the restraint exerted by the walls is
AL, =0.1123 - 0.030 = 0.0823 in (2.090 mm).
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3. Determine the compressive stress
Use the relation s = EAL/L, where the symbols are as given earlier. Thus, s =
30(109)(0.0823)/[18(12)] 11,430 Ib/in? (78,809.9 kPa).

THERMAL EFFECTS IN COMPOSITE
MEMBER HAVING ELEMENTS IN PARALLEL

A Y2-in (12.7-mm) diameter Copperweld bar consists of a steel core % in (9.53 mm) in di-
ameter and a copper skin Y1s in (1.6 mm) thick. What is the elongation of a 1-ft (0.3-m)
length of this bar, and what is the internal force between the steel and copper arising from
a temperature rise of 80°F (44.4°C)? Use the following values for thermal expansion co-
efficients: ¢, = 6.5 x 106 and ¢, = 9.0 x 10-, where the subscripts s and c refer to steel
and copper, respectively. Also, E. = 15 x 106 [b/in? (1.03 x 10% kPa).

Calculation Procedure:

1. Determine the cross-sectional areas of the metals
The total area 4 = 0.1963 in? (1.266 cm?). The area of the steel 4, = 0.1105 in? (0.712
cm?). By difference, the area of the copper 4, = 0.0858 in? (0.553 cm?).

2. Determine the coefficient of expansion of the

composite member

Weight the coefficients of expansion of the two members according to their respective
AE values. Thus

A,E, (relative) = 0.1105 x 30 x 106 = 3315
AE, (relative) = 0.0858 x 15 x 105 = 1287

Total 4602

Then the coefficient of thermal expansion of the composite member is ¢ = (3315¢, +
1287¢,)/4602 = 7.2 x 107/°F (1.30 x 10-5/°C).

3. Determine the thermal expansion of the 1-ft (0.3-m) section
Using the relation AL = cLAT, we get AL = 7.2(10%)(12)(80) = 0.00691 in (0.17551 mm).

4. Determine the expansion of the first material without restraint
Using the same relation as in step 3 for copper without restraint yields AL, = 9.0(107) x
(12)(80) = 0.00864 in (0.219456 mm).

5. Compute the restraint of the first material
The copper is restrained to the amount computed in step 3. Thus, the restraint exerted by
the steel is AL, = 0.00864 — 0.00691 = 0.00173 in (0.043942 mm).

6. Compute the restraining force exerted by the second material
Use the relation P = (4.EAL.)/L, where the symbols are as given before: P =
[1,287,000(0.00173))/12 = 185 Ib (822.9 N).

7. Verify the results obtained

Repeat steps 4, 5, and 6 with the two materials interchanged. So AL, = 6.5(10-6)(12)(80)
"=0.00624 in (0.15849 mm); AL, = 0.00691 — 0.00624 = 0.00067 in (0.01701 mm). Then

P =13,315,000(0.00067)/12 = 185 1b (822.9 N), as before.
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THERMAL EFFECTS IN COMPOSITE
MEMBER HAVING ELEMENTS IN SERIES

The aluminum and steel bars in Fig. 23 have cross-sectional areas of 1.2 and 1.0 in? (7.7
and 6.5 cm?), respectively. The member is restrained against lateral deflection. A temper-
ature rise of 100°F (55°C) causes the length of the member to increase to 42.016 in
(106.720 cm). Determine the stress and deformation of each bar. For aluminum, £ = 10 x
106 ¢ = 13.0 x 107%; for steel, ¢ = 6.5 x 1075,

Calculation Procedure:

1. Express the deformation of each bar resulting from the
temperature change and the compressive force
The temperature rise causes the bar to expand,
whereas the compressive force resists this expan-
sion. Thus, the net expansion is the difference be-

tween these two changes, or AL, = cLAT —

PL/(AE), where the subscript a refers to the alu- Alum—]

minum bar; the other symbols are the same as 24"

given earlier. Substituting gives AL, = 13.0 x (60.9 cm)
1076(24)(100) — P(24)/[1.2(10 x 10%)] = (31,200 —- 42"
2P)10°5, Eq. a. Likewise, for steel: AL, = 6.5 x (106.7 cm)
1076(18)(100) — P(18)/{1.0(30 x 10%)] = (11,700 - Steel——a 18"

0.6P)107%, Eq. b. (45f cm)

2. Sum the results in step 1 to obtain
the total deformation of the member
Set the result equal to 0.016 in (0.4064 mm); FIGURE 23

solve for P. Or, AL = (42,900 — 2.6P)10-6 = 0.016

in (0.4064 mm); P = (42,900 — 16,000)12.6 =

10,350 1b (46,037 N).

3. Determine the stresses and deformation

Substitute the computed value of P in the stress equation s = P/A. For aluminum s, =
10,350/1.2 = 8630 1b/in? (59,503.9 kPa). Then AL, = (31,200 - 2 x 10,350)107 = 0.0105
in (0.2667 mm). Likewise, for steel s, = 10,350/1.0 = 10,350 Ib/in? (71,363.3 kPa); and
AL, = (11,700 - 0.6 x 10,350)10-6 = 0.0055 in (0.1397 mm).

SHRINK-FIT STRESS AND RADIAL
PRESSURE

An open steel cylinder having an internal diameter of 4 ft (1.2 m) and a wall thickness of
%16 in (7.9 mm) is to be heated to fit over an iron casting. The internal diameter of the
cylinder before heating is /52 in (0.8 mm) less than that of the casting. How much must
the temperature of the cylinder be increased to provide a clearance of /32 in (0.8 mm) all
around between the cylinder and casting? If the casting is considered rigid, what stress
will exist in the cylinder after it cools, and what radial pressure will it then exert on the
casting?
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Calculation Procedure:

1. Compute the temperature rise required

Use the relation AT = AD/(cD), where AT = temperature rise required, °F (°C); AD =
change in cylinder diameter, in (mm); ¢ = coefficient of expansion of the cylinder = 6.5 x
1076/°F (1.17 x 10~%/°C); D = cylinder internal diameter before heating, in (mm). Thus
AT=(3/32)/[6.5 x 1075(48)1 = 300°F (167°C).

2. Compute the hoop stress in the cylinder

Upon cooling, the cylinder has a diameter /32 in (0.8 mm) larger than originally. Compute
the hoop stress from s = EAD/D = 30 x 105('/32)/48 = 19,500 1b/in® (134,452.5 kPa).

3. Compute the associated radial pressure
Use the relation p = 2¢5/D, where p = radial pressure, Ib/in? (kPa), with the other symbols
as given earlier. Thus p = 2(5/16)(19,500)/48 = 254 Ib/in? (1751.3 kPa).

TORSION OF A CYLINDRICAL SHAFT

A torque of 8000 1b-ft (10,840 N-m) is applied at the ends of a 14-ft (4.3-m) long cylindri-
cal shaft having an external diameter of 5 in (127 mm) and an internal diameter of 3 in
(76.2 mm). What are the maximum shearing stress and the angle of twist of the shaft if the
modulus of rigidity of the shaft is 6 x 10° Ib/in? (4.1 x 10* MPa)?

Calculation Procedure:

1. Compute the polar moment of inertia of the shaft

For a hollow circular shaft, J = (w/32)(D* — d*), where J = polar moment of inertia of a
transverse section of the shaft with respect to the longitudinal axis, in* (cm*); D = external
diameter of shaft, in (mm); d = internal diameter of shaft, in (mm). Substituting gives
J=(a/32)(5* — 3*) = 53.4 in* (2222.6 cm*).

2. Compute the shearing stress in the shaft

Use the relation s, = TR/J, where s, = shearing stress, Ib/in> (MPa); T = applied torque,
Ib-in (N'm); H = radius of shaft, in (mm). Thus s, = [(8000)(12)(2.5)}/53.4 = 4500 Ib/in?
(31,027.5 kPa).

3. Compute the angle of twist of the shaft

Use the relation 6 = TL/JG, where 0 = angle of twist, rad; L = shaft length, in (mm);
G = modulus of rigidity, 1b/in> (GPa). Thus 6 = (8000)(12)(14)(12)/[53.4(6,000,000)] =
0.050 rad, or 2.9°.

ANALYSIS OF A COMPOUND SHAFT

The compound shaft in Fig. 24 was formed by rigidly joining two solid segments. What
torque may be applied at B if the shearing stress is not to exceed 15,000 Ib/in? (103.4
MPa) in the steel and 10,000 1b/in? (69.0 MPa) in the bronze? Here G, = 12 x 106 Ib/in?
(82.7 GPa); G, = 6 x 106 1b/in? (41.4 GPa).
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Calculation Procedure: 5.0' 45"

(.5 m) 13 m
1. Determine the relationship
between the torque in the shaft //’
segments A 8 C
Since segments 4B and BC (Fig. 24) are - Y
twisted through the same angle, the torque Bronze—"" Steel A
applied at the junction of these segments is d'woemmep | 7S 3'762mmip
distributed in proportion to their relative

rigidities. Using the subscripts s and b to
denote steel and bronze, respectively, we
see that 0 = T.L/JG,) = T,L,/(J,Gp),
where the symbols are as given in the pre-
vious calculation procedure. Solving
yields T, = (5/4.5)(34/44)(12/6)T,, = 0.703
T,.

2. Establish the relationship between the shearing stresses

For steel, s,, = 16T/(wD%), where the symbols are as given earlier. Thus s,
16(0.703T,)/(w3%). Likewise, for bronze, s, = 16T,/(w43), .. s, = 0.703(4%/3%)s,,
1'67ssb'

3. Compute the allowable torque
Ascertain which material limits the capacity of the member, and compute the allowable
torque by solving the shearing-stress equation for T.

If the bronze were stressed to 10,000 Ib/in? (69.0 MPa), inspection of the above rela-
tions shows that the steel would be stressed to 16,700 Ib/in? (115.1 MPa), which exceeds
the allowed 15,000 Ib/in? (103.4 MPa). Hence, the steel limits the capacity. Substituting
the allowed shearing stress of 15,000 Ib/in? (103.4 MPa) gives T, = 15,000m(3%)/[16(12) =
6630 1b-ft (8984.0 N-m); also, T, = 6630/0.703 = 9430 Ib-ft (12,777.6 N-m). Then T =
6630 + 9430 = 16,060 Ib-ft (21,761.3 N-m).

FIGURE 24. Compound shaft.

i

Stresses in Flexural Members

In the analysis of beam action, the general assumption is that the beam is in a horizontal
position and carries vertical loads lying in an axis of symmetry of the transverse section
of the beam.

The vertical shear V at a given section of the beam is the algebraic sum of all vertical
forces to the left of the section, with an upward force being considered positive.

The bending moment M at a given section of the beam is the algebraic sum of the
moments of all forces to the left of the section with respect to that section, a clockwise
moment being considered positive.

If the proportional limit of the beam material is not exceeded, the bending stress (also
called the flexural, or fiber, stress) at a section varies linearly across the depth of the sec-
tion, being zero at the neutral axis. A positive bending moment induces compressive
stresses in the fibers above the neutral axis and tensile stresses in the fibers below. Conse-
quently, the elastic curve of the beam is concave upward where the bending moment is
positive.
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Ascertain which material limits the capacity of the member, and compute the allowable
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If the bronze were stressed to 10,000 Ib/in? (69.0 MPa), inspection of the above rela-
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6630 1b-ft (8984.0 N-m); also, T, = 6630/0.703 = 9430 Ib-ft (12,777.6 N-m). Then T =
6630 + 9430 = 16,060 Ib-ft (21,761.3 N-m).
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Stresses in Flexural Members

In the analysis of beam action, the general assumption is that the beam is in a horizontal
position and carries vertical loads lying in an axis of symmetry of the transverse section
of the beam.

The vertical shear V at a given section of the beam is the algebraic sum of all vertical
forces to the left of the section, with an upward force being considered positive.

The bending moment M at a given section of the beam is the algebraic sum of the
moments of all forces to the left of the section with respect to that section, a clockwise
moment being considered positive.

If the proportional limit of the beam material is not exceeded, the bending stress (also
called the flexural, or fiber, stress) at a section varies linearly across the depth of the sec-
tion, being zero at the neutral axis. A positive bending moment induces compressive
stresses in the fibers above the neutral axis and tensile stresses in the fibers below. Conse-
quently, the elastic curve of the beam is concave upward where the bending moment is
positive.
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SHEAR AND BENDING MOMENT IN A BEAM

Construct the shear and bending-moment diagrams for the beam in Fig. 25. Indicate the
value of the shear and bending moment at all significant sections.

Calculation Procedure:

1. Replace the distributed load on each interval with its equivalent

concentrated load

Where the load is uniformly distributed, this equivalent load acts at the center of the
interval of the beam. Thus W,z = 2(4) = 8 kips (35.6 kN); Ws=2(6) = 12 kips (53.3 kN);
Wy = 8 + 12 = 20 kips (89.0 kN); Wp = 3(15) = 45 kips (200.1 kN); Wpp = 1.4(5) =

7 kips (31.1 kN).

Wis Wac Weo Woe
| | ) |
6 k* * * ‘ 4.2 kips
ips L. .
(26.7 kN | 2525218 11 3 kips/lin 1 (438 KN/m)  (3oESnm| (187 kW)
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19 kips (84.5 kN) - ( )
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2. Determine the reaction at each support

Take moments with respect to the other support. Thus M, = 25R, — 6(21) — 20(20) —
45(7.5) + 7(2.5) + 4.2(5) = 0; M, = 6(4) + 20(5) + 45(17.5) + 7(27.5) + 4.2(30) - 25R,,
= 0. Solving gives R, = 33 kips (146.8 kN); R, = 49.2 kips (218.84 kN).

3. Verify the computed resuits and determine the shears
Ascertain that the algebraic sum of the vertical forces is zero. If this is so, the computed
results are correct.

Starting at 4, determine the shear at every significant section, or directly to the left or
right of that section if a concentrated load is present. Thus ¥, at right = 33 kips (146.8
kN); V3 at left =33 — 8 =25 kips (111.2 kN); V3 at right =25 — 6 = 19 kips (84.5 kN); V¢
=19~ 12 =7 kips (31.1 kN); V', at left = 7 — 45 = 38 kips (-169.0 kN); ¥}, at right =
—38 +49.2 = 11.2 kips (49.8 kN); V at left = 11.2 — 7 =4.2 kips (18.7 kN); V' at right =
42-42=0.

4. Plot the shear diagram

Plot the points representing the forces in the previous step in the shear diagram. Since the
loading between the significant sections is uniform, connect these points with straight
lines. In general, the slope of the shear diagram is given by d¥/dx = —w, where w = unit
load at the given section and x = distance from left end to the given section.

5. Determine the bending moment at every significant séction
Starting at 4, determine the bending moment at every significant section. Thus M, = 0;
Mg =33(4) — 8(2) = 116 fr-kips (157 kKN'm); M. = 33(10) — 8(8) — 6(6) — 12(3) = 194
fi-kips (263 kN'm). Similarly, My =-38.5 ft-kips (-52.2 kN'm); Mz =0.

6. Plot the bending-moment diagram

Plot the points representing the values in step 5 in the bending-moment diagram (Fig. 25).
Complete the diagram by applying the slope equation dM/dx = V. where V denotes the
shear at the given section. Since this shear varies linearly between significant sections, the
bending-moment diagram comprises a series of parabolic arcs.

7. Alternatively, apply a moment theorem

Use this theorem: If there are no externally applied moments in an interval 1-2 of the
span, the difference between the bending moments is M, — = M, = [ V dx = the area un-
der the shear diagram across the interval.

Calculate the areas under the shear diagram to obtain the following results: M, = 0;
Mp= M, + (433 + 25) = 116 ftkips (157.3 kN'm); M. = 116 + 15(6)(19 + 7) = 194
ft-kips (263 kKN'm); Mp = 194 + Y4(15)(7 — 38) =-38.5 ft-kips (-52.2 kN'm); My =-385+
%(5)(11.2+4.2)=0.

8. Locate the section at which the bending moment is maximum

As a corollary of the equation in step 6, the maximum moment occurs where the shear is
zero or passes through zero under a concentrated load. Therefore, CF = 7/3 = 2.33 ft
(0.710 m).

9. Compute the maximum moment
Using the computed value for CF, we find M = 194 + 14(2.33)(7) = 202.2 ft-kips (274.18
kN-m).

BEAM BENDING STRESSES

A beam having the trapezoidal cross section shown in Fig. 264 carries the loads indicated
in Fig. 26b. What is the maximum bending stress at the top and at the bottom of this
beam?
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Calculation Procedure:

1. Compute the left reaction and the section at which the

shear is zero

The left reaction R; = ¥(10)(500) + 1600(2.5/10) = 2900 1b (12,899.2 N). The section 4
at which the shear is zero is x = 2900/500 = 5.8 ft (1.77 m).

2. Compute the maximum moment
Use the relation M, = %(2900)(5.8) = 8410 Ib-ft (11,395.6 N'-m) = 100,900 lb-in
(11,399.682 N-m).

3. Locate the centroidal axis of the section

Use the AISC Manual for properties of the trapezoid. Or y, = (9/3)[(2 x 6 + 3)1(6 + 3)] =
5 in (127 mm); y, =4 in (101.6 mm).

4. Compute the moment of inertia of the section

Using the AISC Manual, I = (9*/36)[(6% +4 x 6 x 3 + 32)/(6 + 3)] = 263.3 in* (10,959.36
cm*).

5. Compute the stresses in the beam

Use the relation f= My/I, where f= bending stress in a given fiber, 1b/in? (kPa); y = dis-
tance from neutral axis to given fiber, in. Thus f,, = 100,900(5)/263.3 = 1916-lb/in?
(13,210.8-kPa) compression, fiowom = 100,900(4)/263.3 = 1533-1b/in? (10,570.0-kPa) ten-
sion.

In general, the maximum bending stress at a section where the moment is M is given
by f= M_/I, where ¢ = distance from the neutral axis to the outermost fiber, in (mm). For
a section that is symmetric about its centroidal axis, it is convenient to use the section
modulus S of the section, this being defined as § = I/c. Then f= M/S.

ANALYSIS OF A BEAM ON MOVABLE
SUPPORTS

The beam in Fig. 27a rests on two movable supports. It carries a uniform live load of w
Ib/lin ft and a uniform dead load of 0.2w 1b/lin ft. If the allowable bending stresses in ten-
sion and compression are identical, determine the optimal location of the supports.
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FIGURE 27

Calculation Procedure:

1. Pilace full load on the overhangs, and compute the

negative moment

Refer to the moment diagrams. For every position of the supports, there is a correspon-
ding maximum bending stress. The position for which this stress has the smallest value
must be identified.

As the supports are moved toward the interior of the beam, the bending moments be-
tween the supports diminish in algebraic value. The optimal position of the supports is
that for which the maximum potential negative moment M, is numerically equal to the
maximum potential positive moment M,. Thus, M, = —1.2w(x%/2) = —0.6wx?.

2. Place only the dead load on the overhangs and the full load
between the supports. Compute the positive moment.

Sum the areas under the shear diagram to compute M,. Thus, M, = [1.2w(L/2 — x)? -
0.2wx?] = w(0.15L? — 0.6Lx + 0.5x?).

3. Equate the absolute values of M, and M, and solve for x
Substituting gives 0.6x2 = 0.15L% — 0.6Lx + 0.5x%; x = L10.5%5 — 3) = 0.240L.

FLEXURAL CAPACITY OF A COMPOUND BEAM

A W16 x 45 steel beam in an existing structure was reinforced by welding an WT6 x 20
to the bottom flange, as in Fig. 28. If the allowable bending stress is 20,000 Ib/in?
(137,900 kPa), determine the flexural capacity of the built-up member.



1.46 STRUCTURAL STEEL ENGINEERING AND DESIGN

wie c=12.05"
16.12" — (306.07 mm)
(409.45 mm) CA.
“ ¥y = 3.99"(101.35 mm)
y r "
597" wWT6 ] y2=4.89" (124.21 mm)
(151.63 mm)} — Ty =1.08"(27.43 mm)

FIGURE 28. Compound beam.

Calculation Procedure:

1. Obtain the properties of the elements

Using the AISC Manual, determine the following properties. For the W16 x 45, d=16.12
in (409.45 mm); 4 = 13.24 in? (85.424 cm?); I = 583 in* (24,266 cm*). For the WT6 x 20,
d=15.97 in (151.63 mm); A = 5.89 in? (38.002 cm?); [ = 14 in* (582.7 cm*); y, = 1.08 in
(27.43 mm); y, =5.97 - 1.08 = 4.89 in (124.21 mm).

2. Locate the centroidal axis of the section

Locate the centroidal axis of the section with respect to the centerline of the W16 x 45,
and compute the distance ¢ from the centroidal axis to the outermost fiber. Thus, y,, =
5.89[(8.06 + 4.89)]/(5.89 + 13.24) = 3.99 in (101.346 mm). Then ¢ = 8.06 + 3.99 = 12.05
in (306.07 mm).

3. Find the moment of inertia of the section with respect to its
centroidal axis

Use the relation [ + Ak* for each member, and take the sum for the two members to find /
for the built-up beam. Thus, for the W16 x 45: k= 3.99 in (101.346 mm); 10 + Ak 583 +
13.24(3.99)? = 793 in* (33,007.1 cm*). For the WT6 x 20: k= 8.06 — 3.99 + 4.89 = 8.96 in
(227.584 mmy); I, + Ak = 14 + 5.89(8.96)? = 487 in* (20,270.4 cm*). Then I = 793 + 487
= 1280 in* (53,277.5 cm*).

4. Apply the moment equation to find the flexural capacity
Use the relation M = fI/c = 20,000(1280)/[12.05(12)] = 177,000 Ib-ft (240,012 N-m).

ANALYSIS OF A COMPOSITE BEAM

An 8 x 12 in (203.2 x 304.8 mm) timber beam (exact size) is reinforced by the addition
of a7 x % in (177.8 x 12.7 mm) steel plate at the top and a 7-in (177.8-mm) 9.8-Ib
(43.59-N) steel channel at the bottom, as shown in Fig. 29a. The allowable bending
stresses are 22,000 Ib/in? (151,690 kPa) for steel and 1200 Ib/in? (8274 kPa) for timber.
The modulus of elasticity of the timber is 1.2 x 10° lb/in? (8.274 x 105 kPa). How does
the flexural strength of the reinforced beam compare with that of the original timber
beam?
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Calculation Procedure:

1. Compute the rigidity of the steel compared with that of the
timber

Let n = the relative rigidity of the steel and timber. Then n = E/E, = (30 x 10%)/(1.2 x 106)
=25.

2. Transform the composite beam to an equivalent

homogeneous beam

To accomplish this transformation, replace the steel with timber. Sketch the cross section
of the transformed beam as in Fig. 29b. Determine the sizes of the hypothetical elements
by retaining the dimensions normal to the axis of bending but multiplying the dimensions
parallel to this axis by ».

3. Record the properties of each element of the

transformed section

Element 1: 4 = 25(7)(*2) = 87.5 in? (564.55 ¢cm?), I, is negligible.

Element 2: 4 = 8(12) = 96 in? (619.4 cm?); I, = ¥4(8)123 = 1152 in* (4.795 dm?).

Element 3: Refer to the AISC Manual for the data; 4 = 25(2.85) = 71.25 in? (459.71 cm?);
I, =25(0.98) = 25 in* (1040.6 cm*); a = 0.55 in (13.97 mm); b = 2.09 in (53.09 mm).

4. Locate the centroidal axis of the transformed section

Take static moments of the areas with respect to the centerline of the 8 x 12 in (203.2 x
304.8 mm) rectangle. Then y,, = [87.5(6.25) — 71.25(6.55)}/(87.5 + 96 + 71.25) = 0.31 in
(7.87 mm). The neutral axis of the composite section is at the same location as the cen-
troidal axis of the transformed section.

5. Compute the moment of inertia of the transformed section

Apply the relation in step 3 of the previous calculation procedure. Then compute the dis-
tance c to the outermost fiber. Thus, 7 = 1152 + 25 + 87.5(6.25 — 0.31)? + 96(0.31)> +
71.25(6.55 + 0.31)? = 7626 in* (31.74 dm*). Also, ¢ = 0.31 + 6 + 2.09 = 8.40 in (213.36
mm).

6. Determine which material limits the beam capacity

Assume that the steel is stressed to capacity, and compute the corresponding stress in the
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transformed beam. Thus, f = 22,000/25 = 880 Ib/in? (6067.6 kPa) < 1200 Ib/in® (8274
kPa).

In the actual beam, the maximum timber stress, which occurs at the back of the chan-
nel, is even less than 880 Ib/in? (6067.6 kPa). Therefore, the strength of the member is
controlled by the allowable stress in the steel.

7. Compare the capacity of the original and reinforced beams

Let subscripts 1 and 2 denote the original and reinforced beams, respectively. Compute
the capacity of these members, and compare the results. Thus M, = fI/c = 1200(1152)/6 =
230,000 Ib-in (25,985.4 N-m); M, = 880(7626)/8.40 = 799,000 Ib-in (90,271.02 N-m);
M,/M, =799,000/230,000 = 3.47. Thus, the reinforced beam is nearly 3% times as strong
as the original beam, before reinforcing.

BEAM SHEAR FLOW AND
SHEARING STRESS

A timber beam is formed by securely bolting a 3 x 6 in (76.2 x 152.4 mm) member to a
6 x 8 in (152.4 x 203.2 mm) member (exact size), as shown in Fig. 30. If the beam carries
a uniform load of 600 1b/lin ft (8.756 kN/m) on a simple span of 13 ft (3.9 m), determine
the longitudinal shear flow and the shearing stress at the juncture of the two elements at a
section 3 ft (0.91 m) from the support.

Calculation Procedure:

1. Compute the vertical shear at the given section
Shear flow is the shearing force acting on a unit distance. In this instance, the shearing
force on an area having the same width as the beam and a length of 1 in (25.4 mm) meas-
ured along the beam span is required.

Using dimensions and data from Fig. 30, we find R = 12(600)(13) = 3900 1b (17,347.2
N); V= 3900 — 3(600) = 2100 1b (9340.8 N).

2. Compute the moment of inertia of the cross section
I=(V2)(bd®) = (V12)(6)(11)% = 666 in* (2.772 dm*)

_5“ 6“ 3"
(38.1 mm) - (152.4 mm) {76.2 mm)
4
" 2
55 40"
7 mm}| (1016 mm NN\ "
P NEAN 1

- \\ 8" (279.4 mm)
\ (20:1.2 mm)

FIGURE 30
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3. Determine the static moment of the cross-sectional area

Calculate the static moment Q of the cross-sectional area above the plane under consider-
ation with respect to the centroidal axis of the section. Thus, Q = Ay = 3(6)(4) = 72 in®
(1180.1 cm?).

4. Compute the shear flow
Compute the shear flow g, using g = VQ/I'=2100(72)/666 = 227 1b/lin in (39.75 kN/m).

5. Compute the shearing stress
Use the relation v = g/t = VQ/(It), where ¢ = width of the cross section at the given plane.
Then v = 227/6 = 38 Ib/in? (262.0 kPa).

Note that v represents both the longitudinal and the transverse shearing stress at a par-
ticular point. This is based on the principle that the shearing stresses at a given point in
two mutually perpendicular directions are equal.

LOCATING THE SHEAR CENTER OF A SECTION

A cantilever beam carries the load shown in Fig. 31a and has the transverse section
shown in Fig. 31b. Locate the shear center of the section.

Calculation Procedure:

1. Construct a free-body diagram of a portion of the beam
Consider that the transverse section of a beam is symmetric solely about its horizontal

Thickness = OZ.IO"

P =10 kips (44 S5 kN) (2.54 mm)
ONE X (127 mm) g 3(76.2mm)
Vv, Vv, |
][
)(-1-‘
(a) Load on contilever beam
Vi P
16" CA. | l
(406.4 mm) o
———0 e
| 73"(76.2 mm)|
—'E:E]FEEaE
cl__lee o
ﬂ 5"(127 I . A =)
T, ( mm) T, v v
A B8
(¢) Partial pian of top flange (b) Section X-X

FIGURE 31
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centroidal axis. If bending of the beam is not to be accompanied by torsion, the vertical
shearing force at any section must pass through a particular point on the centroidal axis
designated as the shear, or flexural, center.

Cut the beam at section 2, and consider the left portion of the beam as a free body. In
Fig. 31, indicate the resisting shearing forces V', V,, and V; that the right-hand portion of
the beam exerts on the left-hand portion at section 2. Obtain the directions of ¥, and V),
this way: Isolate the segment of the beam contained between sections 1 and 2; then isolate
a segment ABDC of the top flange, as shown in Fig. 31c. Since the bending stresses at
section 2 exceed those at section 1, the resultant tensile force T, exceeds T,. The resisting
force on CD is therefore directed to the left. From the equation of equilibrium 2M = 0 it
follows that the resisting shears on AC and BD have the indicated direction to constitute a
clockwise couple.

This analysis also reveals that the shearing stress varies linearly from zero at the edge
of the flange to a maximum value at the juncture with the web.

2. Compute the shear flow

Determine the shear flow at £ and F (Fig. 31) by setting Q in ¢ = VQ/I equal to the static
moment of the overhanging portion of the flange. (For convenience, use the dimensions
to the centerline of the web and flange.) Thus = 12(0.10)(16) + 2(8)(0.10)(8)* = 137 in*
(57023 cm®*); Qpg = 5(0.10)(8) = 4.0 in’ (65.56 cm?); O = 3(0.10)(8) = 2.4 in® (39.34
cm?); gz = VQp:/I = 10,000(4.0)/137 = 292 1b/lin in (51,137.0 N/m); ¢ = 10,000(2.4)/137
=175 1b/lin in (30,647.2 N/m). )
3. Compute the shearing forces on the transverse section

Since the shearing stress varies linearly across the flange, V; = 2(292)(5) = 730 Ib
(3247.0N); ¥, ="1(175)(3) = 263 1b (1169.8 N); V3 =P = 10,000 Ib (44,480 N).

4. Locate the shear center

Take moments of all forces acting on the left-hand portion of the beam with respect to a
longitudinal axis through the shear center O. Thus Ve + 16(V, — V7)) = 0, or 10,000e +
16(263 —730) = 0; e =0.747 in (18.9738 mm).

5. Verify the computed values

Check the computed values of g5 and g by considering the bending stresses directly. Ap-
ply the equation Af = Vy/I, where Af = increase in bending stress per unit distance along
the span at distance y from the neutral axis. Then Af = 10,000(8)/137 = 584 1b/(in*in)
(158.52 MPa/m).

InFig. 31¢, set AB =1 in (25.4 mm). Then gz = 584(5)(0.10) = 292 Ib/lin in (51,137.0
N/m); gz = 584(3)(0.10) = 175 Ib/lin in (30,647.1 N/m).

Although a particular type of beam (cantilever) was selected here for illustrative pur-
poses and a numeric value was assigned to the vertical shear, note that the value of ¢ is in-
dependent of the type of beam, form of loading, or magnitude of the vertical shear. The
location of the shear center is a geometric characteristic of the transverse section.

BENDING OF A CIRCULAR FLAT PLATE

A circular steel plate 2 ft (0.61 m) in diameter and % in (12.7 mm) thick, simply support-
ed along its periphery, carries a uniform load of 20 Ib/in? (137.9 kPa) distributed over the
entire area. Determine the maximum bending stress and deflection of this plate, using
0.25 for Poisson’s ratio.
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Calculation Procedure:

1. Compute the maximum stress in the plate
If the maximum deflection of the plate is less than about one-half the thickness, the ef-
fects of diaphragm behavior may be disregarded.

Compute the maximum stress, using the relation f'= (34)(3 + v)w(R/)?, where R = plate
radius, in (mm); ¢ = plate thickness, in (mm); v = Poisson’s ratio. Thus, f =
(¥%4)(3.25)(20)(12/0.5)* = 14,000 Ib/in? (96,530.0 kPa).

2. Compute the maximum deflection of the plate

Use the relation y = (1 — v)(5 + v)/R¥[2(3 + v)Er] = 0.75(5.25)(14,000)(12)%/[2(3.25)(30 x
109)(0.5)] = 0.081 in (2.0574 mm). Since the deflection is less than one-half the thickness,
the foregoing equations are valid in this case.

BENDING OF A RECTANGULAR FLAT PLATE

A2 x3 £t (61.0 x 91.4 cm) rectangular plate, simply supported along its periphery, is to
carry a uniform load of 8 1b/in? (55.2 kPa) distributed over the entire area. If the allowable
bending stress is 15,000 1b/in? (103.4 MPa), what thickness of plate is required?

Calculation Procedure:

1. Select an equation for the stress in the plate

Use the approximation f = a?b*w/[2(a? + b*)#?], where a and b denote the length of the
plate sides, in (mm).

2. Compute the required plate thickness

Solve the equation in step 1 for ¢. Thus 2 = a®b*w/[2(a? + b?)f] = 2%(3)2(144)(8)/[2(2% +
32)(15,000)] = 0.106; ¢ = 0.33 in (8.382 mm).

COMBINED BENDING AND AXIAL
LOAD ANALYSIS

A post having the cross section shown in Fig. 32 carries a concentrated load of 100 kips
(444.8 kN) applied at R. Determine the stress induced at each corner.

Calculation Procedure:

1. Replace the eccentric load with an equivalent system

Use a concentric load of 100 kips (444.8 kN) and two couples producing the following
moments with respect to the coordinate axes:

M, = 100,000(2) = 200,000 Ib-in (25,960 N-m)

M, =100,000(1) = 100,000 Ib-in (12,980 N-m)
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2. Compute the section modulus

Determine the section modulus of the rectangular cross section with respect to each axis.
Thus S, = (‘/s)ba?2 (V6)(18)(24)? = 1728 in® (28,321.9 cm?); S, = (V/6)(24)(18)* = 1296 in®
(21,241 cm’).

3. Compute the stresses produced

Compute the uniform stress caused by the concentric load and the stresses at the edges
caused by the bending moments. Thus f; = P/4 = 100,000/[18(24)] = 231 Ib/in? (1592.7
kPa); £, = M, /S, = 200,000/1728 = 116 Ib/in? (799.8 kPa); £, = M, /S, = 100,000/1296 =
77 1b/in? (530 9 kPa).

4. Determine the stress at each corner

Combine the results obtained in step 3 to obtain the stress at each corner. Thus £, =231 +
116 + 77 = 424 1b/in? (2923.4 kPa); fz = 231 + 116 — 77 = 270 1b/in? (1861.5 kPa); f.- =
231 - 116 + 77 = 192 1b/in? (1323.8 kPa); f, = 231 — 116 — 77 = 38 Ib/in? (262.0 kPa).
These stresses are all compressive because a positive stress is considered compressive,
whereas a tensile stress is negative.

5. Check the computed corner stresses

Use the following equation that applies to the special case of a rectangular cross section: f
= (PIA)(1 % 6e,/d, + 6e,/d,), where e, and e, = eccentnc1ty of load with respect to the x
and y axes, respectlvely, d, and d, = side of rectangle in (mrn) normal to x and y axes, re-
spectively. Solving for the quantltles within the brackets gives 6e,/d, = 6(2)/24 = 0.5;
6e,/d, = 6(1)/18 = 0.33. Then f, = 231(1 + 0.5 + 0.33) = 424 Ib/in* (2923.4 kPa); f; =
231(1 + 0.5 — 0.33) = 270 1b/in (1861.5 kPa); f- = 231(1 — 0.5 + 0.33) = 192 Ib/in?
(1323.8 kPa); f, = 231(1 — 0.5 — 0.33) = 38 1b/in? (262.0 kPa). These results verify those
computed in step 4.
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FLEXURAL STRESS IN A CURVED MEMBER

The ring in Fig. 33 has an internal diameter of 12 in (304.8 mm) and a circular cross sec-
tion of 4-in (101.6-mm) diameter. Determine the normal stress at 4 and at B (Fig. 33).

Calculation Procedure:

1. Determine the geometrical properties of the cross section

The area of the cross section is 4 = 0.7854(4)? = 12.56 in? (81.037 cm?); the section mod-
ulus is S = 0.7854(2)> = 6.28 in® (102.92 cm?). With ¢ =2 in (50.8 mm), the radius of cur-
vature to the centroidal axis of this section is R = 6 + 2 = 8 in (203.2 mm).

2. Compute the R/c ratio and determine the correction factors

Refer to a table of correction factors for curved flexural members, such as Roark—For-
mulas for Stress and Strain, and extract the correction factors at the inner and outer sur-
face associated with the R/c ratio. Thus R/c =8/2=4; k;= 1.23; k,=0.84.

3. Determine the normal stress

Find the normal stress at 4 and B caused by an equivalent axial load and moment. Thus £}
= P/A + k{M/S) = 9000/12.56 + 1.23(9000 = 8)/6.28 = 14,820-Ib/in? (102,183.9-kPa)
compression; fz = 9000/12.56 — 0.84(9000x 8)/6.28 = 8930-1b/in? (61,572.3-kPa) tension.

SOIL PRESSURE UNDER DAM

A concrete gravity dam has the profile
shown in Fig. 34. Determine the soil D__C__Water surface

pressure at the toe and heel of the dam
when the water surface is level with the '
top. ;
B e
6.1
Calculation Procedure: X2 . "
Xy t
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suitable elements A Y
The soil prism underlying the dam may R E LB
be regarded as a structural member sub- 12 ‘3'7. m i 3 (qg m
jected to simultaneous axial load and T 4|65 -~

bending, the cross section of the member
being identical with the bearing surface
of the dam. Select a 1-ft (0.3-m) length
of dam as representing the entire struc-
ture. The weight of the concrete is 150

(a) Loods on dam

1b/t? (23.56 kN/m?).

Resolve the dam into the elements
AED and EBCD. Compute the weight of
each element, and locate the resultant of
the weight with respect to the toe. Thus
W, = Y%(12)}20)(150) = 18,000 Ib (80.06

(b) Soil pressure under dam

FIGURE 34
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kN); W, = 3(20)(150) = 9000 1b (40.03 kN); 3w = 18,000 + 9000 = 27,000 Ib (120.10
kN). Then x; = (%:)(12) = 8.0 ft 244 m); x> = 12+ 1.5= 135 t (4.1l m).

2. Find the magnitude and location of the resultant of the
hydrostatic pressure

Calling the resultant H = Yawh? = 1%(62.4)(20)? = 12,480 1b (55.51 kN), where w = weight
of water, Ib/ft3> (N/m?), and & = water height, ft (m), then y = (15)(20) = 6.67 ft (2.03 m).
3. Compute the moment of the loads with respect to the

base centerline

Thus, M = 18,000(8 — 7.5) + 9000(13.5 — 7.5) — 12,480(6.67) = 20,200 1b-ft (27,391 N-m)
counterclockwise.

4. Compute the section modulus of the base

Use the relation § = (V/6)bd? = (V6)(1)(15)* = 37.5 3 (1.06 m?).

5. Determine the soil pressure at the dam toe and heel

Compute the soil pressure caused by the combined axial load and bending. Thus f; =
SWi4 + M/S = 27,000/15 + 20,200/37.5 = 2339 1b/ft? (111.99 kPa); £, = 1800 — 539 =
1261 1b/fi (60.37 kPa).

6. Verify the computed results

Locate the resultant R of the trapezoidal pressure prism, and take its moment with respect
to the centerline of the base. Thus R = 27,000 Ib (120.10 kN); m = (15/3)((2 x 1261 +
2339)/(1261 + 2339)] = 6.75 ft (2.05 m); My = 27,000(7.50 — 6.75) = 20,200 1b-ft (27,391
N-m). Since the applied and resisting moments are numerically equal, the computed re-
sults are correct.

LOAD DISTRIBUTION IN PILE GROUP

A continuous wall is founded on three rows of piles spaced 3 ft (0.91 m) apart. The longi-
tudinal pile spacing is 4 ft (1.21 m) in the front and center rows and 6 ft (1.82 m) in the
rear row. The resultant of vertical loads on the wall is 20,000 1b/lin ft (291.87 kN/m) and
lies 3 ft 3 in (99.06 cm) from the front row. Determine the pile load in each row.
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1 6! ’g
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FIGURE 35
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Calculation Procedure:

1. Identify the “repeating group” of piles
The concrete footing (Fig. 35a) binds the piles, causing the surface along the top of the
piles to remain a plane as bending occurs. Therefore, the pile group may be regarded as a
structural member subjected to axial load and bending, the cross section of the member
being the aggregate of the cross sections of the piles.

Indicate the “repeating group” as shown in Fig. 355.

2. Determine the area of the pile group and the moment of inertia
Calculate the area of the pile group, locate its centroidal axis, and find the moment of in-
ertia. Since all the piles have the same area, set the area of a single pile equal to unity.
Then4=3+3+2=8.

Take moments with respect to row 4. Thus 8x = 3(0) + 3(3) + 2(6); x = 2.625 ft
(66.675 mm). Then I = 3(2.625)? + 3(0.375)> + 2(3.375)> =43.9.

3. Compute the axial load and bending moment on the pile group
The axial load P = 20,000(12) = 240,000 Ib (1067.5 kN); then M = 240,000(3.25 — 2.625)
= 150,000 Ib-ft (203.4 KN-m).

4. Determine the pile load in each row

Find the pile load in each row resulting from the combined axial load and moment. Thus,
P/4 =240,000/8 = 30,000 Ib (133.4 kN) per pile; then M/I = 150,000/43.9 = 3420. Also,
Pa = 30,000 - 3420(2.625) = 21,020 1b (93.50 kN) per pile; p, = 30,000 + 3420(0.375) =
31,280 1b (139.13 kN) per pile; p. = 30,000 + 3420(3.375) = 41,540 1b (184.76 kN) per
pile.

5. Verify the above results

Compute the total pile reaction, the moment of the applied load, and the pile reaction with
respect to row 4. Thus, R = 3(21,020) + 3(31,280) + 2(41,540) = 239,980 1b (1067.43
kN); then M, = 240,000(3.25) = 780,000 1b-ft (1057.68 kN'm), and M, = 3(31,280)(3) +
2(41,540)(6) = 780,000 1b-ft (1057.68 kN'm). Since M, = M,, the computed results are
verified.

Deflection of Beams

In this handbook the slope of the elastic curve at a given section of a beam is denoted by
6, and the deflection, in inches, by y. The slope is considered positive if the section rotates
in a clockwise direction under the bending loads. A downward deflection is considered
positive. In all instances, the beam is understood to be prismatic, if nothing is stated to the
contrary.

DOUBLE-INTEGRATION METHOD OF
DETERMINING BEAM DEFLECTION

The simply supported beam in Fig. 36 is subjected to a counterclockwise moment N ap-
plied at the right-hand support. Determine the slope of the elastic curve at each support
and the maximum deflection of the beam.
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FIGURE 36. Deflection of simple beam under end moment.

Calculation Procedure:

1. Evaluate the bending moment at a given section

Make this evaluation in terms of the distance x from the left-hand support to this section.
Thus R; = N/L; M= Nx/L.

2. Write the differential equation of the elastic curve;

integrate twice

Thus EI d*y/dx* = -M = —Nx/L; EI dy/dx = E10 = -Nx*/(2L) + c,; Ely = -Nx*/(6L) + ¢;x +
Csy.

3. Evaluate, the constants of integration

Apply the following boundary conditions: Whenx =0,y =0;..c,=0; whenx=L,y =0;
S.ep = NL/6.

4. Write the slope and deflection equations

Substitute the constant values found in step 3 in the equations developed in step 2. Thus
0 = [N/(6EIL)|(L? — 3x%); y = [Nx/(6EIL)(L? — x?).

S. Find the slope at the supports

Substitute the values x = 0, x = L in the slope equation to determine the slope at the sup-
ports. Thus 6, = NL/(6EI); 6, = —NL/(3EI).

6. Solve for the section of maximum deflection

Set 8= 0 and solve for x to locate the section of maximum deflection. Thus L2 — 3x2 = 0;
x = L/3%3. Substituting in the deflection equation gives y,., = NLY(9EI3%3).

MOMENT-AREA METHOD OF DETERMINING
BEAM DEFLECTION

Use the moment-area method to determine the slope of the elastic curve at each support
and the maximum deflection of the beam shown in Fig. 36.

Calculation Procedure:

1. Sketch the elastic curve of the member and draw the
M/EI) diagram ,
Let 4 and B denote two points on the elastic curve of a beam. The moment-area method is
based on the following theorems:

The difference between the slope at 4 and that at B is numerically equal to the area of
the M/(EI) diagram within the interval 4B.
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The deviation of 4 from a tangent to the elastic curve through B is numerically equal
to the static moment of the area of the M/(EI) diagram within the interval 4B with respect
to 4. This tangential deviation is measured normal to the unstrained position of the beam.

Draw the elastic curve and the M/(EI) diagram as shown in Fig. 37.

2. Calculate the deviation t, of B from the tangent through A

Thus, #, = moment of A4BC about BC = [NL/2ED)(L/3) = NL*(6EI). Also, 6, = t,/L =
NL/6EI).

3. Determine the right-hand slope in an analogous manner

4. Compute the distance to the section where the slope is zero
Area AAED = area AABC(x/L)* = Nx*(2EIL); 6z = 6, — area AAED = NL/(6EI) —
Nx*/(2EILy = 0; x = L/3%5,

5. Evaluate the maximum deflection

Evaluate y,,,, by calculating the deviation #, of A from the tangent through £’ (Fig. 37).
Thus area AAED = 6; = NLAGEI); yyax = t, = NL/(6ED}(2x/3) = [NL/(6ED][(2L/(3 * 3%9)]
= NL?/(9EI3%%), as before.

CONJUGATE-BEAM METHOD OF
DETERMINING BEAM DEFLECTION

The overhanging beam in Fig. 38 is loaded in the manner shown. Compute the deflection
at C.
Calculation Procedure:

1. Assign supports to the conjugate beam
If a conjugate beam of identical span as the given beam is loaded with the M/(ETI) diagram

L

A
T

(a) Elastic curve

(9}

e

A [3 B
(b} M/EI diagrom
FIGURE 37
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(N/m) of the latter, the shear 7 and bending mo-
~y 1b/lin 1 ment M’ of the conjugate beam are equal,
A r B ~Q_1 v respectively, to the slope 0 and deflection y
YR, R o ; . {
L d J at the corresponding section of the given
1 beam.

Assign supports to the conjugate beam

that are compatible with the end conditions

W' W, of the given beam. At 4, the given beam

! A :2 has a specific slope but zero deflection.

X Correspondingly, the conjugate beam has a

wd? e specific shear but zero moment; i.e., it is
2ET simply supported at 4.

A R ’M At C, the given beam has a specific

J slope and a specific deflection. Corre-

R, spondingly, the conjugate beam has both a

shear and a bending moment; i.e., it has a

fixed support at C.

FIGURE 38. Deflection of overhanging 2. Construct the M/(El) diagram
beam. of the given beam
Load the conjugate beam with this area.
The moment at B is — wd?/2; the moment
varies linearly from 4 to B and parabolically from C to B.

3. Compute the resultant of the load in selected intervals

Compute the resultant W] of the load in interval 4B and the resultant W5 of the load in the
interval BC. Locate these resultants. (Refer to the AISC Manual for properties of the
complement of a half parabola.) Then W} = (L/2)[wd?/(2ED] = wdPL/A4ED); x, = %L; W} =
(dI3)[wd?/(2ED)] = wd’/(6EI); x, = Yad.

4. Evaluate the conjugate-beam reaction

Since the given beam has zero deflection at B, the conjugate beam has zero moment at
this section. Evaluate the reaction R; accordingly. Thus Mp=—R;L + WiL/3=0; R; W}/3
=wdL/(12EI).

5. Determine the deflection

Determine the deflection at C by computing M. Thus y. = M. =~ R;(L + d)+ Wi(d + L/3)
+ W3(3d/4) = wa(4L + 3d)/(24EI).

(a) Force diagram of given beam

Re

{b) Force diagram of conjugate beam

UNIT-LOAD METHOD OF COMPUTING BEAM
DEFLECTION

The cantilever beam in Fig. 394 carries a load that varies uniformly from w 1b/lin ft at the
free end to zero at the fixed end. Determine the slope and deflection of the elastic curve at
the free end.

Calculation Procedure:
1. Apply a unit moment to the beam

Apply a counterclockwise unit moment at 4 (Fig. 39b). (This direction is selected because
it is known that the end section rotates in this manner.) Let x = distance from 4 to given
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w Ib/lin f1
(N/m)
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(a) Actual load on beam

i fteld v
(1.4 Nem) | 4

(b) Superimposed moment to find 8,

1 b
(4.45N) v
2

FIGURE 39

section; w, = load intensity at the given section; M and m = bending moment at the given
section induced by the actual load and by the unit moment, respectively.

2. Evaluate the moments in step 1

Evaluate M and m. By proportion, w, = w(L — x)/L; M = —(x¥/6)2w + w,) = —(wx*/6)[2 +
(L —x)/L] = -wx* (3L — x)/(6L); m = —1.

3. Apply a suitable slope equation

Use the equation 8, = [% [Mm/(ED] dx. Then EI6, = [} [wx?3L ~ x)/(6L)] dx = [w/(6L)]
x[§ BLx? — x¥) dx = [W/(6L)J(3Lx*/3 — x*/4)]§ = [W/6L)](L* — L*/4); thus, 6, — YewL?/
(ET) counterclockwise. This is the slope at 4.

4. Apply a unit load to the beam

Apply a unit downward load at 4 as shown in Fig. 39¢. Let m’ denote the bending mo-
ment at a given section induced by the unit load.

5. Evaluate the bending moment induced by the unit load;
find the deflection
Apply y, = [§ [Mm'/(ED)] dx. Then m’ = —x; Ely, = [§ [wx3(3L ~ x)/(6L)] dx = [w/(6L)]
xf& x3(3L - x) dx; y,, = (11/120)wL*/(EI).

The first equation in step 3 is a statement of the work performed by the unit moment at
A as the beam deflects under the applied load. The left-hand side of this equation express-
es the external work, and the right-hand side expresses the internal work. These work
equations constitute a simple proof of Maxwell’s theorem of reciprocal deflections, which
is presented in a later calculation procedure.

DEFLECTION OF A CANTILEVER FRAME

The prismatic rigid frame 4BCD (Fig. 40a) carries a vertical load P at the free end. Deter-
mine the horizontal displacement of 4 by means of both the unit-load method and the mo-
ment-area method.
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: /I/‘/l/“:‘/Pb
B Cc 8 I3
[]
Allb c
’(4.45 NJ ¢
P
D
v}
(o) Load on frome (b) Elastic curve (c) Moment diagram
FIGURE 40

Calculation Procedure:

1. Apply a unit horizontal load
Apply the unit horizontal load at 4, directed to the right.

2. Evaluate the bending moments in each member
Let M and m denote the bending moment at a given section caused by the load P and by
the unit load, respectively. Evaluate these moments in each member, considering a mo-
ment positive if it induces tension in the outer fibers of the frame. Thus:

Member AB: Let x denote the vertical distance from A to a given section. Then M = 0;
m=x.

Member BC: Let x denote the horizontal distance from B to a given section. Then M =
Px;m=a.

Member CD: Let x denote the vertical distance from C to a given section. Then M =
Pb;m=a-x.
3. Evaluate the required deflection
Calling the required deflection A, we apply A = [[Mm/(ED)] dx; EIA = [§ Paxdx + [§Pb(a
~x) dx = Pax*2}} + Pb(ax — x%/2)]§ = Pab?/2 + Pabc — Pbc?/2; A = [Pb/(2ED)(ab + 2ac ~
2

'If this value is positive, 4 is displaced in the direction of the unit load, i.e., to the right.
Draw the elastic curve in hyperbolic fashion (Fig. 405). The above three steps constitute
the unit-load method of solving this problem.

4. Construct the bending-moment diagram
Draw the diagram as shown in Fig. 40c.

5. Compute the rotation and horizontal displacement by the
moment-area method

Determine the rotation and horizontal displacement of C. (Consider only absolute values.)
Since there is no rotation at D, EI6= Pbc; EIA, = Pbc?*/2.

6. Compute the rotation of one point relative to another and the
total rotation

Thus EIfzc = Pb%2; EI0 = Pbc + Pb?/2 = Pb(c + b/2). The horizontal displacement of B
relative to C is infinitesimal.
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7. Compute the horizontal displacement of one point

relative to another

Thus, EIA, = Elfga = Pb(ac + ab/2).

8. Combine the computed displacements to obtain the absolute
displacement

Thus EIA = EI(A, — EIA)) = Pb(ac + ab/2 — c2/2); A = [Pb/(2ED](2ac + ab — c3).

Statically Indeterminate Structures

A structure is said to be statically determinate if its reactions and internal forces may be
evaluated by applying solely the equations of equilibrium and statically indeterminate if
such is not the case. The analysis of an indeterminate structure is performed by combining
the equations of equilibrium with the known characteristics of the deformation of the
structure.

SHEAR AND BENDING MOMENT OF A BEAM
ON A YIELDING SUPPORT

The beam in Fig. 41a has an EI value of 35 x 10° 1b-in® (100,429 kN'm?) and bears on a
spring at B that has a constant of 100 kips/in (175,126.8 kN/m); i.e., a force of 100 kips
(444.8 kN) will compress the spring 1 in (25.4 mm). Neglecting the weight of the mem-
ber, construct the shear and bending-moment diagrams.

50kips (222 .4 kN) 25.6 kips (113.9kN)
Al (2.Im)y B c
D 8 c
e r————————
' . A ° -0.6kips
14 '3 (~2.7kN)
(43m) 77 43m)
- 244 kips
(a) Load on beam (-108.5 kN)

{c) Shear diagram
50 kips (222 .4 kN)

1 l T T 179.2 ft e kips (242.9kNem)
R R R (I.3kNem)
A ® ¢ 8.4 ft « kips
(b) Force diagram A D B C

FIGURE 41
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Calculation Procedure:

1. Draw the free-body diagram of the beam
Draw the diagram in Fig. 41b. Consider this as a simply supported member carrying a 50-
kip (222.4-kN) load at D and an upward load R;, at its center.

2. Evaluate the deflection

Evaluate the deflection at B by applying the equations presented for cases 7 and 8 in the
AISC Manual. With respect to the 50-kip (222.4-kN) load, 5 =7 ft (2.1 m) and x = 14 ft
(4.3 m). If y is in inches and Ry is in pounds, y = 50,000(7)(14)(28% — 72 — 1431728/
[6(35)(10)°28] — Rp(28)*1728/[48(35)(10)°] = 0.776 — (2.26/10°)R ;.

3. Express the deflection in terms of the spring constant

The deflection at B is, by proportion, y/1 = Rz/100,000; y = Rz/100,000.

4. Equate the two deflection expressions, and solve for the

upward load

Thus Ry/10% = 0.776 — (2.26/105)R; Ry = 0.776(10)%/3.26 = 23,800 Ib (105,862.4 N).

5. Calculate the reactions R, and R; by taking moments

We have ZM = 28R, — 50,000(21) + 23,800(14) = 0; R, = 25,600 1b (113,868.8 N);
M, = 50,000(7) — 23,800(14) -- 28R~ = 0; R = 600 1b (2668.8 N).

6. Construct the shear and moment diagrams

Construct these diagrams as shown in Fig. 41. Then M, = 7(25,600) = 179,200 Ib-ft
(242,960 N-m); Mp = 179,200 — 7(24,400) = 8400 1b-ft (11,390.4 N-m).

MAXIMUM BENDING STRESS IN BEAMS
JOINTLY SUPPORTING A LOAD

In Fig. 42a, a W16 x 40 beam and a W12 x 31 beam cross each other at the vertical line
V, the bottom of the 16-in (406.4-mm) beam being % in (9.53 mm) above the top of the
12-in (304.8-mm) beam before the load is applied. Both members are simply supported.

i 15 kips
§ E (W16) (66.7 kN)
V. O I15kips (66.7 kN) |
=le 10 R P , Rz
(30m) 10’ 10’ 10
4 wie 3 Bomy T (Gom " (30m)
. ,‘1,
'7& 7 .
’ £ (W12
qu (24 : .
K4 Ryle8 14 R
10 20’ 24m)  (43m)
(30m) (6.1m)

(o} (b)
FIGURE 42. Load carried by two beams.
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A column bearing on the 16-in (406.4-mm) beam transmits a load of 15 kips (66.72 kN)
at the indicated location. Compute the maximum bending stress in the 12-in (304.8-mm)
beam.

Calculation Procedure:

1. Determine whether the upper beam engages the lower beam

To ascertain whether the upper beam engages the lower one as it deflects under the 15-kip
(66.72-kN) load, compute the deflection of the 16-in (406.4-mm) beam at ¥ if the 12-in
(304.8-mm) beam were absent. This distance is 0.74 in (18.80 mm). Consequently, the
gap between the members is closed, and the two beams share the load.

2. Draw a free-body diagram of each member

Let P denote the load transmitted to the 12-in (304.8-mm) beam by the 16-in (406.4-mm)
beam [or the reaction of the 12-in (304.8-mm) beam on the 16-in (406.4-mm) beam)].
Draw, in Fig. 425, a free-body diagram of each member.

3. Evaluate the deflection of the beams

Evaluate, in terms of P, the deflections y;, and y,¢ of the 12-in (304.8-mm) and 16-in
(406.4-mm) beams, respectively, at line V.

4. Express the relationship between the two deflections

Thus, Y12=Vie— 0.375.

5. Replace the deflections in step 4 with their values as obtained
in step 3

After substituting these deflections, solve for P.

6. Compute the reactions of the lower beam

Once the reactions of the lower beam are computed, obtain the maximum bending mo-
ment. Then compute the corresponding flexural stress.

THEOREM OF THREE MOMENTS

For the two-span beam in Fig. 43a, compute the reactions at the supports. Apply the theo-
rem of three moments to arrive at the results.

Calculation Procedure:

1. Using the bending-moment equation, determine Mg

Figure 43b represents a general case. For a prismatic beam, the bending moments at the
three successive supports are related by ML, + 2M,(L, + Ly) + MyL, — Yaw L3 — Vaw,L3 —
P,\L}(k, — k) — P,L3(k, — k3). Substituting in this equation gives M, =M;=0; L, = 10 ft
(3.0 m); L, = 15 ft (4.6 m); w, = 2 kips/lin ft (29.2 kN/m); w, = 3 kips/lin ft (43.8 kN/m);
P, =6 kips (26.7 N); P, = 10 kips (44.5 N); k; = 0.5; k, = 0.4; 2Mp(10 + 15) = —V4(2)(10)
— V(3)(15) — 6(10)%(0.5 — 0.125) — 10(15)%(0.4 — 0.064); M = —80.2 frkips (—108.8
kN-m).

2. Draw a free-body diagram of each span

Figure 43¢ shows the free-body diagrams.
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FIGURE 44

3. Take moments with respect to each support to find the
reactions
Span AB: M, = 6(5) + 2(10)(5) + 80.2 — 10Rz, = 0; Ry, = 21.02 kips (93.496 kN);
SMy=10R, - 6(5) - 2(10)(5) + 80.2 = 0; R, = 4.98 kips (22.151 kN).

Span BC: SMp = —80.2 + 10(9) + 3(15)(7.5) — 15R- = 0; R = 23.15 kips (102.971
kN); ZM- = 15Rs, — 80.2 — 10(6) — 3(15)(7.5) = 0; Rg, = 31.85 kips (144.668 kN); Ry =
21.02 +31.85 = 52.87 kips (235.165 kN).

THEOREM OF THREE MOMENTS: BEAM
WITH OVERHANG AND FIXED END

Determine the reactions at the supports of the continuous beam in Fig. 44a. Use the theo-
rem of three moments.

Calculation Procedure:
1. Transform the given beam to one amenable to analysis by the

theorem of three moments
Perform the following operations to transform the beam:
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a. Remove the span 4B, and introduce the shear V; and moment M that the load on 4B
induces at B, as shown in Fig. 44b.

b. Remove the fixed support at D and add the span DE of zero length, with a hinged sup-
portat E.

For the interval BD, the transformed beam is then identical in every respect with the
actual beam.

2. Apply the equation for the theorem of three moments

Consider span BC as span 1 and CD as span 2. For the 5-kip (22.2-kN) load, k, = 12/16 =
0.75; for the 10-kip (44.5kN) load, k, = 8/16 = 0.5. Then -12(10) + 2M(10 + 16) +
16Mp = —Y4(4)(10)® — 5(16)*0.75 — 0.422) — 10(16)%(0.5 — 0.125). Simplifying gives
13M_ + 4My, = —565.0, Eq. a.
3. Apply the moment equation again
Considering CD as span 1 and DE as span 2, apply the moment equation again. Or, for the
5-kip (22.2-kN) load, %, = 0.25; for the 10-kip (44.5-kN) load, k, = 0.5. Then 16M, +
2M,(16 + 0) = ~5(16)%(0.25 — 0.016) — 10(16)2(0.50 — 0.125). Simplifying ylelds Mg+
2Mp=-78.7, Eq. b.
4. Solve the moment equations
Solving Egs. a and b gives M- =-37.1 ft-kips (~50.30 kN-m); My, =-20.8 ft-kips (-28.20
kN'm).
5. Determine the reactions by using a free-body diagram
Find the reactions by drawing a free-body diagram of each span and taking moments with
respect to each support. Thus Rz = 20.5 kips (91.18 kN); R, = 32.3 kips (143.67 kN);
Rp= 5.2 kips (23.12 kN).

BENDING-MOMENT DETERMINATION BY
MOMENT DISTRIBUTION

Using moment distribution, determine the bending moments at the supports of the mem-
ber in Fig. 45. The beams are rigidly joined at the supports and are composed of the same
material.

Calculation Procedure:

1. Calculate the flexural stiffness of each span

Using K to denote the flexural stiffness, we see that K = /L if the far end remains fixed
during moment distribution; X = 0.75//L if the far end remains hinged during moment dis-
tribution. Then Kz = 270/18 = 15; K= 192/12 = 16; Kp = 0.75(240/20) = 9. Record
all the values on the drawing as they are obtained.

2. For each span, calculate the required fixed-end moments at
those supports that will be considered fixed

These are the external moments with respect to the span; a clockwise moment is consid-
ered positive. (For additional data, refer to cases 14 and 15 in the AISC Manual.) Then
M,z = -wL?12 = -2(18)%/12 = -54.0 frkips (-73.2 kN'm); Mz, = +54.0 ft-kips (73.22
kN-m). Similarly, Mpc = —48.0 ft-kips (—65.1 kN-m); M = +48.0 ft-kips (65.1 kN-m);
My, =-24(15)(5)(15 + 20)/[2(20)?] = ~78.8 ftkips (~106.85 kN-m).
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2 kips/lin ft 4 kips/lin ft .
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Carryover -1.5 +99 -1.6
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2nd distribution -48 =51 +1.0 +06
/ (-6.5) (-649)>< (+1.4)] (+0.81)
Carryover -2.4 +05 -2.6
(-3.3) (+0.68) (-3.5)
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Carryover -0l +09 ~02
(-1.4) (+1.22) (-0.27)
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Carryover -0.2
(-0.27)
Final moments -58.2 +457| -457 +66.1 -66.1 (e}
(-78.9) (+61.9){ (-61.9) (+896)| (-896)

FIGURE 45. Moment distribution.

3. Calculate the unbalanced moments

Computing the unbalanced moments at B and C yields the following: At B, +54.0 —48.0 =
+ 6.0 ft-kips (8.14 kN-m); at C, +48.0 — 78.8 =—30.8 fi-kips (-41.76 kN-m).

4. Apply balancing moments; distribute them in proportion to the
stiffness of the adjoining spans

Apply the balancing moments at B and C, and distribute them to the two adjoining spans
in proportion to their stiffness. Thus My, = —6.0(15/31) = -2.9 fr-kips (-3.93 kN-m);
Mg = —6.0(16/31) = -3.1 ftkips (-4.20 kN'm); Mz = +30.8(16/25) = +19.7 frkips
(26.71 XN m); Mp = +30.8(9/25) = +11.1 ft-kips (15.05 kN-m).

5. Perform the “carry-over” operation for each span

To do this, take one-half the distributed moment applied at one end of the span, and add
this to the moment at the far end if that end is considered to be fixed during moment dis-
tribution.
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6. Perform the second cycle of moment balancing and distribution
Thus My, = -9.9(15/31) = -4.8; Mg =-9.9(16/31) = —5.1; Mz = +1.6(16/25) = + 1.0;
Mcp =+1.6(9/25) = +0.6.

7. Continue the foregoing procedure until the carry-over moments
become negligible

Total the results to obtain the following bending moments: M, =-58.2 fi-kips (-78.91 kN
m); Mz =—45.7 ftkips (—61.96 kKN'-m); M= —66.1 ft-kips (-89.63 kN-m).

ANALYSIS OF A STATICALLY
INDETERMINATE TRUSS

Determine the internal forces of the truss in Fig. 46a. The cross-sectional areas of the
members are given in Table 5.

Calculation Procedure:

1. Test the structure for static determinateness

Apply the following criterion. Let j = number of joints; m = number of members; r =
number of reactions. Then if 2/ = m + r, the truss is statically determinate; if 2j <m + r,
the truss is statically indeterminate and

the deficiency represents the degree of in-

determinateness.
. . (80.1kN)  (106.8 kN)
. !n this truss,]. =6,m = 10, r =3, con- 18 kips 24 kips
sisting of a vertical reaction at 4 and D
and a horizontal reaction at D. Thus 2j = E Fy__ Bkips (267 kN)

12; m + r=13. The truss is therefore stat-
ically indeterminate to the first degree;

i.e., there is one redundant member. i2'
The method of analysis comprises the (3.7m)
following steps: Assume a value for the _L

A
internal force in a particular member, and =R B c D
calculate the relative displacement A, of ‘ Y45 kips (20 kN)

the two'ends of that member caysed sole- I @ecTm:2r®2m

ly by this force. Now remove this member (o)

to secure a determinate truss, and calcu-
late the relative displacement A, caused

solely by the applied loads. The true inter- & 3

nal force is of such magnitude that A; =

A, lkip(|4.45 kN)
2. Assume a unit force for one Tkip (4.45 kN)
member

Assume for convenience that the force in A ) C D

BF is 1-kip (4.45-kN) tension. Remove
this member, and replace it with the as-
sumed 1-kip (4.45-kN) force that it exerts FIGURE 46. Statically indeterminate
at joints B and F, as shown in Fig. 465. truss.

(b}
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TABLE 5 Forces in Truss Members (Fig. 46)

A, in? L,in U, kips S, kips
Member  (cm?) (mm) (kN) S, kips (kN) UPL/A SUL/A (kN)
AB 5 108 0 +15.25 0 0 +15.25
(32.2) (2,743.2) ) (+67.832) ©) 0) (+67.832)
BC 5 108 —0.60 +15.25 +7.8 -197.6 +14.07
(32.2) (2,743.2) (-2.668)  (+67.832) (+615.54) (-15,417.78) (+62.588)
CD 5 108 0 +13.63 0 0 +13.63
(322) (2,743.2) ) (+60.626) ) ©) (+60.626)
EF 4 108 —0.60 -13.63 +9.7 +220.8 -14.81
(25.8) (2,743.2) (-2.688) (-60.626) (+756.84) (+17,198.18) (-65.874)
BE 4 144 —0.80 +4.50 +23.0 -129.6 +2.92
(25.8) (3,657.6) (-3.558) (+20.016) (+1,794.68) (-10,096.24) (+ 12.988)
CF 4 144 -0.80 +2.17 +23.0 -62.5 +0.59
(25.8) (3,657.6) (-3.558) (+9.952) (+1.794.68) (—4,868.55) (+2.624)
AE 6 180 0 2542 0 0 2542
(38.7) (4,572.0) ©) (-113.068) ) 0) (-113.068)
BF 5 180 +1.00 0 +36.0 0 +1.97
(322) (4,572.0) (+4.448) ()] (+2,809.18) 0) (+8.762)
CE 5 180 +1.00 271 +36.0 -97.6 —0.74
(32.2) (4,572.0) (+4.448) (-9.652)  (+2,809.18) (-6,095.82) (-3.291)
DF 6 180 0 -32.71 0 0 -32.71
(38.7) (4,572.0) ) (-145.494) 0) ) (-145.494)
Total +135.5 -266.5
(+10,580.1) (~19,280.2)

3. Calculate the force induced in each member solely
by the unit force
Calling the induced force U, produced solely by the unit tension in BF, record the results
in Table 5, considering tensile forces as positive and compressive forces as negative.

4. Calculate the force induced in each member solely

by the applied loads
With BF eliminated, calculate the force S induced in each member solely by the applied

loads.

5. Evaluate the true force in the selected member
Use the relation BF = [SSUL/(AE)}/[2UPL/(AE)]. The numerator represents A,; the de-
nominator represents A; for a 1-kip (4.45-kN) tensile force in BF. Since E is constant, it
cancels. Substituting the values in Table 5 gives BF = (-266.5/135.5) = 1.97 kips (8.76
kN). The positive result confirms the assumption that BF is tensile.

6. Evaluate the true force in each member
Use the relation 8’ =S5+ 1.97 U, where S’ = true force. The results are shown in Table 5.
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Moving Loads and Influence Lines

ANALYSIS OF BEAM CARRYING MOVING
CONCENTRATED LOADS

The loads shown in Fig. 47a traverse a beam of 40-ft (12.2-m) simple span while their
spacing remains constant. Determine the maximum bending moment and maximum shear
induced in the beam during transit of these loads. Disregard the weight of the beam.

948" |
(2.89m) .
R=29kips .
1Okips]  (I78KN) (l292kN;p 15 kips
(44 .5 kN) 4k'95| (66.7 kN)
¢
A ] D C
448’ 752"
5 {0.36m) (2.29m)
(1.5m)i  12'(37m)
(a) Load system
(44 5kN) 29 kips (129kN)
10 kips l
A B D C
R 15.26' 15.26' Re
465m) 40'(12.2m) (4.65m)
(b} Position |, for 10-kip (44 .5-kN) load
29 kips (129 kN)
{178 kN) |
1 4 kips I l
A B D C
R, , , Re
17.76 17.76
(5.41m) (5.41m)
(c) Position 2, for 4-kip (17.8-kN) load
{129 kN)
29 kips
15 kips (66.7 kN)
R A B D C R
L 16.24' 16.24' R
(4.95m) (4.95m)

(d) Position 3, for 15-kip (66.7-kN) load
FIGURE 47
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Calculation Procedure:

1. Determine the magnitude of the resultant and its location
Since the member carries only concentrated loads, the maximum moment at any instant
occurs under one of these loads. Thus, the problem is to determine the position of the load
system that causes the absolute maximum moment.

-The magnitude of the resultant R is R = 10 + 4 + 15 = 29 kips (129.0 kN). To deter-
mine the location of R, take moments with respect to 4 (Fig. 47). Thus SM, = 294D =
4(5) + 15(17), or AD = 9.48 1t (2.890 m).

2. Assume several trial load positions

Assume that the maximum moment occurs under the 10-kip (44.5-kN) load. Place the
system in the position shown in Fig. 475, with the 10-kip (44.5-kN) load as far from the
adjacent support as the resultant is from the other support. Repeat this procedure for the
two remaining loads.

3. Determine the support reactions for the trial load positions
For these three trial positions, calculate the reaction at the support adjacent to the load un-
der consideration. Determine whether the vertical shear is zero or changes sign at this
load. Thus, for position 1: R; = 29(15.26)/40 = 11.06 kips (49.194 kN). Since the shear
does not change sign at the 10-kip (44.5-kN) load, this position lacks significance.
Position 2: R;= 29(17.76)/40 = 12.88 kips (57.290 kN). The shear changes sign at the
4-kip (17.8 kN) load.
Position 3: Rg =29(16.24)/40 = 11.77 kips (52.352 kN). The shear changes sign at the
15-kip (66.7-kN) load.

4. Compute the maximum bending moment associated with
positions having a change in the shear sign
This applies to positions 2 and 3. The absolute maximum moment is the larger of these
values. Thus, for position 2: M = 12.88(17.76) — 10(5) = 178.7 ft-kips (242.32 kN'm). Po-
sition 3: M = 11.77(16.24) = 191.1 ftkips (259.13 kN'm). Thus, M, = 191.1 ft-kips
(259.13 kN'm).
5. Determine the absolute maximum shear
For absolute maximum shear, place the 15-kip (66.7-kN) load an infinitesimal distance
to the left of the right-hand support. Then V,,,, = 29(40 — 7.52)/40 = 23.5 kips (104.53
kN).

When the load spacing is large in relation to the beam span, the absolute maximum
moment may occur when only part of the load system is on the span. This possibility re-
quires careful investigation.

INFLUENCE LINE FOR SHEAR IN A
BRIDGE TRUSS

The Pratt truss in Fig. 48a supports a bridge at its bottom chord. Draw the influence line
for shear in panel cd caused by a moving load traversing the bridge floor.

Calculation Procedure:

1. Compute the shear in the panel being considered with a unit
load to the right of the panel

Cut the truss at section YY. The algebraic sum of vertical forces acting on the truss at pan-
el points to the left of Y'Y is termed the shear in panel cd.
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Y
B C D E F
25'
(76m)
0 8,
b c d e f g
Y
6 panels @ 20'(6.1m) = 120'(36.6 m)
(a) Pratt truss
| kip (4.45 kN)
x
/-Ftoor It:eoms\1 Bridge fk[)or—\ : i |
@ b c d & e f 9
Re Truss chord Re
(b) Transmission of load through floor beams
FIGURE 48

Consider tha. a moving load traverses the bridge floor from right to left and that the
portion of the load carried by the given truss is 1 kip (4.45 kN). This unit load is transmit-
ted to the truss as concentrated loads at two adjacent bottom-chord panel points, the latter
being components of the unit load. Let x denote the instantaneous distance from the right-
hand support to the moving load.

Place the unit load to the right of d, as shown in Fig. 485, and compute the shear V., in
panel cd. The truss reactions may be obtained by considering the unit load itself rather
than its panel-point components. Thus: R, =x/120; V_, = R; = x/120, Eq. a.

2. Compute the panel shear with the unit load to the left
of the panel considered '
Placing the unit load to the left of ¢ yields V_; =R, — 1 =x/120 -1, Eq. J.

3. Determine the panel shear with the unit load within the panel
Place the unit load within panel cd. Determine the panel-point load P, at ¢, and compute
V.4 Thus P, = (x — 60)/20 =x/20 —3; V., = R; — P, =x/120 — (x/20 — 3) = —x/24 + 3, Eq.
c.

4. Construct a diagram representing the shear associated

with every position of the unit load

Apply the foregoing equations to represent the value of V_, associated with every position
of the unit load. This diagram, Fig. 48¢, is termed an influence line. The point j at which
this line intersects the base is referred to as the neutral point.

5. Compute the slope of each segment of the influence line
Line a, dV_ /dx = 1/120; line b, dV_,/dx = 1/120; line ¢, dV_/dx =-1/24. Lines a and b are
therefore parallel because they have the same slope.
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FORCE IN TRUSS DIAGONAL CAUSED
BY A MOVING UNIFORM LOAD

The bridge floor in Fig. 48a carries a moving uniformly distributed load. The portion of
the load transmitted to the given truss is 2.3 kips/lin ft (33.57 kN/m). Determine the limit-
ing values of the force induced in member Cd by this load.

Calculation Procedure:

1. Locate the neutral point, and compute dh

The force in Cd is a function of V. Locate the neutral point j in Fig. 48¢ and compute dh.
From Eq. ¢ of the previous calculation procedure, V_; = —jg/24 + § = 0; jg= 72 ft (21.9
m). From Eq. a of the previous procedure, dh = 60/120 = 0.5.

2. Determine the maximum shear

To secure the maximum value of V_; apply uniform load continuously in the interval jg.
Compute ¥, by multiplying the area under the influence line by the intensity of the ap-
plied load. Thus, V_; = 5(72)(0.5)(2.3) = 41.4 kips (184.15 kN).

3. Determine the maximum force in the member

Use the relation Cdy,, = V [csc ), where csc 6 = [(20% + 252)/25%]%5 = 1.28. Then
Cd . = 41.4(1.28) = 53.0-kip (235.74-kN) tension.

4. Determine the minimum force in the member

To secure the minimum value of ¥V, apply uniform load continuously in the interval aj.
Perform the final calculation by proportion. Thus, Cd,;/Cd,,., = area aij/area jhg =
—(2/3)*=9. Then Cd,,;, = «(4/9)(53.0) = 23.6-kip (104.97-kN) compression.

FORCE IN TRUSS DIAGONAL CAUSED BY
MOVING CONCENTRATED LOADS

The truss in Fig. 49a supports a bridge that transmits the moving-load system shown in
Fig. 495 to its bottom chord. Determine the maximum tensile force in De.

Calculation Procedure:

1. Locate the resultant of the load system

The force in De (Fig. 49) is a function of the shear in panel de. This shear is calculated
without recourse to a set rule in order to show the principles involved in designing for
moving loads.

To locate the resultant of the load system, take moments with respect to load 1.
Thus, R = 50 kips (222.4 kN). Then 2M; = 12(6) + 18(16) + 15(22) = 50x; x = 13.8 ft
(421 m).

2. Construct the influence line for V,,

In Fig. 49¢, draw the influence line for V,,. Assume right-to-left locomotion, and express
the slope of each segment of the influence line. Thus slope of ik = slope of ma = 1/200;
slope of km = —7/200.
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8 panels @ 25'(7.6 m) = 200' (61m)
(@) Pratt truss
6 . 10 4.6
(reaml (30m) kigm)
(22.2 kN)|5 kips [i2 kips 18 kips|i5 kips
(53.4 kN) \ (66.8 kN)
o @ R@ \Q(BO,I kN)
€ x=13.8 *} 8.2' 6
[e]
£ 42m) ' (2.5m) |&’
(b) Load system
[
aQ d
\VJ e l
m
(c) Infiuence line for shear in. panel de
FIGURE 49

3. Assume a load position, and determine whether V,, increases
or decreases

Consider that load 1 lies within panel de and the remaining loads lie to the right of this
panel. From the slope of the influence line, ascertain whether ¥, increases or decreases
as the system is displaced to the left. Thus dV,/dx = 5(-7/200) + 45(1/200) > 0; .". V,, in-
creases.

4. Repeat the foregoing calculation with other assumed load
positions
Consider that loads 1 and 2 lie within the panel de and the remaining loads lie to the right
of this panel. Repeat the foregoing calculation. Thus dV,/dx = 17( —7/200) + 33(1/200) <
0; .~ ¥, decreases.

From these results it is concluded that as the system moves from right to left, V,, is
maximum at the instant that load 2 is at e.
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5. Place the system in the position thus established,
and compute V,,
Thus, R, = 50(100 + 6 — 13.8)/200 = 23.1 kips (102.75 kN). The load at panel point d is
P,=5(6)/25 1.2 kips (5.34 kN); ¥, = 23.1 — 1.2 = 21.9 kips (97.41 kN).
6. Assume left-to-right locomotion; proceed as in step 3
Consider that load 4 is within panel de and the remaining loads are to the right of this pan-
el. Proceeding as in step 3, we find d¥,;/dx = 15(7/200) + 35( — 1/200) > 0.

So, as the system moves from left to right, V,, is maximum at the instant that load 4 is
ate.
7. Place the system in the position thus established, and
compute V,,
Thus ¥V, = R, = [50(100 — 8.2)1/200 = 23.0 kips (102.30 kN); .". ¥, max = 23.0 kips
(102.30 kN).
8. Compute the maximum tensile force in De

Using the same relation as in step 3 of the previous calculation procedure, we find csc 8=
[(25? + 30%)/30°]°° = 1.30; then De = 23.0(1.30) = 29.9-kip (133.00-kN) tension.

INFLUENCE LINE FOR BENDING MOMENT
IN BRIDGE TRUSS

The Warren truss in Fig. 50a supports a bridge at its top chord. Draw the influence line
for the bending moment at b caused by a moving load traversing the bridge floor.

4 panels @ 30'(9.2m) = 120'(36.6 m)

Y
A B B' C D 3
T
' U
R, | Rp [20'(6.1m)
a b [+ d
5" Y 3 panels @ 30'(9.2m) = 90' (275m)| 5"
(4.6 m) (o) warren truss (4.6 m)
A B g c E

FIGURE 50
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Calculation Procedure:

1. Place the unit load in position, and compute the
bending moment
The moment of all forces acting on the truss at panel points to the left of b with respect to
b is termed the bending moment at that point. Assume that the load transmitted to the giv-
en truss is 1 kip (4.45 kN), and let x denote the instantaneous distance from the right-hand
support to the moving load.

Place the unit load to the right of C, and compute the bending moment A,. Thus R; =
x/120; M, = 45R; = 3x/8, Eq. a.
2. Place the unit load on the other side and compute the
bending moment
Placing the unit load to the left of B and computing M,, M, = 45R; — (x — 75) = -5x/8 +
75, Eq. b.
3. Place the unit load within the panel; compute the panel-point
load and bending moment
Place the unit load within panel BC. Determine the panel-point load P; and compute M,.
Thus = Py (x— 60)/30 =x/30— 2; M, =45R; — 15P; = 3x/8 — 15(x/30 —2) =—x/8 + 30, Eq. c.
4. Applying the foregoing equations, draw the influence line
Figure 505 shows the influence line for Mf,. Computing the significant values yields CG =
(3/8)(60) = 22.50 fi-kips (30.51 kN-m); BH = —(5/8)(90) + 75 = 18.75 ft-kips (25.425
kN-m).
5. Compute the slope of each segment of the influence line
This computation is made for subsequent reference. Thus, line a, dM,/dx = 3/8; line b,
dM,/dx = -5/8; line ¢, dM/dx =—1/8.

FORCE IN TRUSS CHORD CAUSED BY
MOVING CONCENTRATED LOADS

The truss in Fig. 50a carries the moving-load system shown in Fig. 51. Determine the
maximum force induced in member BC during transit of the loads.

Calculation Procedure:

1. Assume that locomotion proceeds
from right to left, and compute the
bending moment

The force in BC is a function of the bending moment

M, at b. Refer to the previous calculation procedure 24 kips

for the slope of each segment of the influence line. 6 kips (26.7 kN) (106.8 kN)
Study of these slopes shows that M, increases as the @ @3m

load system moves until the rear load is at C, the '

front load being 14 ft (4.3 m) to the left of C. Calcu-

late the value of M, corresponding to this load dispo- = .

sition by applying the computed properties of the in- 8 §

fluence line. Thus, M, = 22.50(24) + (22.50 — 1/8 x
14)(6) = 664.5 fi-kips (901.06 kN-m). FIGURE 51
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2. Assume that locomotion proceeds from left to right,

and compute the bending moment

Study shows that M, increases as the system moves until the rear load is at C, the front
load being 14 ft (4.3 m) to the right of C. Calculate the corresponding value of M,,. Thus,
M, = 22.50(24) + (22.50 — 3/8 x 14)(6) = 6435 fikips (872.59 kN'm). .. M}, 1n,, = 664.5
fi-kips (901.06 kKN-m).

3. Determine the maximum force in the member

Cut the truss at plane YY. Determine the maximum force in BC by considering the equi-
librium of the left part of the structure. Thus, 3M, = M, — 20BC = 0; BC = 664.5/20 =
33.2-kips (147.67-kN) compression.

INFLUENCE LINE FOR BENDING MOMENT
IN THREE-HINGED ARCH

The arch in Fig. 524 is hinged at 4, B, and C. Draw the influence line for bending moment
at D, and locate the neutral point.

F E
T Position of unit load —
for zero moment
G ,‘/‘" D
J
V. c Ill
a X b
2 |
v l d
" |
L
R, 6 I B
A
R, n m
L
(a) Three-~hinged arch
S
v'n
Q
A D T c B‘J'— vm
b

R

(b) Influence line for bending moment ot D

FIGURE 52
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Calculation Procedure:

1. Start the graphical construction
Draw a line through 4 and C, intersecting the vertical line through B at E. Draw a line
through B and C, intersecting the vertical line through A4 and F. Draw the vertical line GH
through D.

Let 0 denote the angle between AE and the horizontal. Lines through B and D perpen-
dicular to AE (omitted for clarity) make an angle 6 with the vertical.

2. Resolve the reaction into components
Resolve the reaction at 4 into the components R, and R, acting along AE and 4B, respec-
tively (Fig. 52).
3. Determine the value of the first reaction
Let x denote the horizontal distance from the right-hand support to the unit load, where x
has any value between 0 and L. Evaluate R, by equating the bending moment at B to zero.
Thus Mz =R;b cos 6 —x=0; or =R, =x/(b cos 6).
4. Evaluate the second reaction
Place the unit load within the interval CB. Evaluate R, by equating the bending moment at
Cto zero. Thus M-=R,d=10; .. R, = 0.
§. Calculate the bending moment at D when the unit load lies
within the interval CB
Thus, Mp =—R,v cos 8=—[(v cos 6)/(b cos O)]x, or Mp=—-vx/b, Eq. a. When x =m, M, =
—um/b.
6. Place the unit load in a new position, and determine
the bending moment
Place the unit load within the interval AD. Working from the right-hand support, proceed
in an analogous manner to arrive at the following result: My, = v'(L — x)/a, Eq. b. When x
=L-n,Mp=v'nla.
7. Place the unit load within another interval, and evaluate
the second reaction
Place the unit load within the interval DC, and evaluate R,. Thus M= R,d — (x —m) =0,
or R, =(x—m)/d.

Since both R, and R, vary linearly with respect to x, it follows that M), is also a linear
function of x.

8. Complete the influence line
In Fig. 52b, draw lines BR and AS to represent Eqgs. a and b, respectively. Draw the
straight line SR, thus completing the influence line. The point T at which this line inter-
sects the base is termed the neutral point.

9. Locate the neutral point

To locate T, draw a line through 4 and D in Fig. 52a intersecting BF at J. The neutral
point in the influence line lies vertically below J; that is, M, is zero when the action line
of the unit load passes through J.

The proof is as follows: Since M, = 0 and there are no applied loads in the interval
AD, it follows that the total reaction at 4 is directed along 4D. Similarly, since M= 0
and there are no applied loads in the interval CB, it follows that the total reaction at
B is directed along BC. Because the unit load and the two reactions constitute a bal-
anced system of forces, they are collinear. Therefore, J lies on the action line of the unit
load.

Alternatively, the location of the neutral point may be established by applying the geo-
metric properties of the influence line.
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DEFLECTION OF A BEAM UNDER
MOVING LOADS

The moving-load system in Fig. 534 traverses a beam on a simple span of 40 ft (12.2
m). What disposition of the system will cause the maximum deflection at midspan?

20kips (88.9KN) |, kips Calculation Procedure:
= (53.4 kN
(2.1m) W( 34 KN) 1. Develop the equations for the
(a) midspan deflection under a unit load

The maximum deflection will manifestly occur
when the two loads lie on opposite sides of the cen-

L«-—"-»" kip (4.45kN) terline of the span. In calculating the deflection at

midspan caused by a load applied at any point on

L 4 the span, it is advantageous to apply Maxwell’s

(b) theorem of reciprocal deflections, which states the

following: The deflection at A caused by a load at

FIGURE 53 B equals the deflection at B caused by this load at
A

In Fig. 53b, consider the beam on a simple span

L to carry a unit load applied at a distance a from the lefi-hand support. By referring to
case 7 of the AISC Manual and applying the principle of reciprocal deflections, derive the
following equations for the midspan deflection under the unit load: When a < L/2, y =
(3L%a — 4a*)/(48E]). When a <L/2,y = [3LX(L — a) — 4(L — a)’)/(48EI).
2. Position the system for purposes of analysis
Position the system in such a manner that the 20-kip (89.0-kN) load lies to the left of cen-
ter and the 12-kip (53.4-kN) load to the right of center. For the 20-kip (89.0-kN) load, set
a = x. For the 12-kip (53.4-kN) load,a =x+7; L —a=40—-(x + 7) =33 —x.
3. Express the total midspan deflection in terms of x
Substitute in the preceding equations. Combining all constants into a single term &, we
find ky = 20(3 ) x 40% — 4x3) + 12(3 x 40%(33 —x) — 4(33 —x)?].
4. Solve for the unknown distance
Set dy/dx = 0 and solve for x. Thus, x = 17.46 ft (5.321 m).

For maximum deflection, position the load system with the 20-kip (89.0-kN) load
17.46 ft (5.321 m) from the left-hand support.

Riveted and Welded Connections

In the design of riveted and welded connections in this handbook, the American Institute
of Steel Construction Specification for the Design, Fabrication and Erection of Structural
Steel for Buildings is applied. This is presented in Part 5 of the Manual of Steel Construc-
tion.

The structural members considered here are made of ASTM A36 steel having a yield-
point stress of 36,000 Ib/in* (248,220 kPa). (The yield-point stress is denoted by F, in the
Specification.) All connections considered here are made with A141 hot-driven rivets or
fillet welds of A233 class E60 series electrodes.
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From the Specification, the allowable stresses are as follows: Tensile stress in connect-
ed member, 22,000 Ib/in? (151,690.0 kPa); shearing stress in rivet, 15,000 Ib/in?
(103,425.0 kPa); bearing stress on projected area of rivet, 48,500 1b/in? (334,408.0 kPa);
stress on throat of fillet weld, 13,600 Ib/in? (93,772.0 kPa).

Let n denote the number of sixteenths included in the size of a fillet weld. For exam-
ple, for a %-in (9.53-mm) weld, n = 6. Then weld size = n/16. And throat area per linear
inch of weld = 0.707n/16 = 0.0442n in%. Also, capacity of weld = 13,600(0.0442n) = 600n
Ib/lin in (108.0n N/mm).

As shown in Fig. 54, a rivet is said to be in single shear if the opposing forces tend to
shear the shank along one plane and in double shear if they tend to shear it along two
planes. The symbols R, R, and R, are used here to designate the shearing capacity of a
rivet in single shear, the shearing capacity of a rivet in double shear, and the bearing ca-
pacity of a rivet, respectively, expressed in pounds (newtons).

CAPACITY OF A RIVET

Determine the values of R, R;, and R, for a ¥-in (19.05-mm) and 7-in (22.23-mm)
rivet.

Calculation Procedure:

1. Compute the cross-sectional area of the rivet
For the %-in (19.05-mm) rivet, area = 4 = 0.785(0.75)% = 0.4418 in? (2.8505 cm?). Like-
wise, for the %-in (22.23-mm) rivet, 4 = 0.785(0.875)? = 0.6013 in? (3.8796 cm?).
2. Compute the single and double shearing capacity of the rivet
Let ¢ denote the thickness, in inches (millimeters) of the connected member, as shown in
Fig. 54. Multiply the stressed area by the allowable stress to determine the shearing ca-
pacity of the rivet. Thus, for the 34-in (19.05-mm) rivet, R, = 0.4418(15,000) = 6630 1b
(29,490.2 N); R, = 2(0.4418)(15,000) = 13,250 1b (58,936.0 N). Note that the factor of 2
is used for a rivet in double shear.

Likewise, for the %-in (22.23-mm) rivet, R, = 0.6013(15,000) = 9020 1b (40,121.0
N); Ry = 2(0.6013)(15,000) = 18,040 1b (80,242.0 N).
3. Compute the rivet bearing capacity
The effective bearing area of a rivet of diameter d in (mm) = dt. Thus, for the %-in (19.05-
mm) rivet, R, = 0.754(48,500) = 36,3807 1b (161,709¢ N). For the 7%-in (22.23-mm) rivet,
R, = 0.875(48,500) = 42,440¢ 1b (188,733t N). By substituting the value of ¢ in either re-
lation, the numerical value of the bearing capacity could be obtained.

. N e W

- ) it <R T
t | 1 | L [ I i‘
\J R I | | Y ———=R/2
(0) Rivet in single shear (b} Rivet in double shear

FIGURE 54
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INVESTIGATION OF A LAP SPLICE

The hanger in Fig. 55a is spliced with nine %-in (19.05-mm) rivets in the manner shown.
Compute the load P that may be transmitted across the joint.

Calculation Procedure:

1. Compute the capacity of the joint in shear and bearing

There are three criteria to be considered: the shearing strength of the connection, the bear-
ing strength of the connection, and the tensile strength of the net section of the plate at
each row of rivets.

Since the load is concentric, assume that the load transmitted through each rivet is
16P. As plate 4 (Fig. 55) deflects, it bears against the upper half of each rivet. Conse-
quently, the reaction of the rivet on plate 4 is exerted above the horizontal diametral plane
of the rivet.

Computing the capacity of the joint in shear and in bearing yields Pgy = 9(6630) =
59,700 1b (265,545.6 N); P, = 9(36,380)(0.375) = 122,800 1b (546,214.4 N).

p
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(228.6 x 9.53 mm)
b

FIGURE 55
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2. Compute the tensile capacity of the plate

The tensile capacity P, 1b (N) of plate 4 (Fig. 55) is required. In structural fabrication, riv-
et holes are usually punched Vs in (1.59 mm) larger than the rivet diameter. However, to
allow for damage to the adjacent metal caused by punching, the effective diameter of the
hole is considered to be ¥ in (3.18 mm) larger than the rivet diameter.

Refer to Fig. 55b, ¢, and d. Equate the tensile stress at each row of rivets to 22,000
b/in? (151,690.0 kPa) to obtain P,. Thus, at aa, residual tension = P, net area = (9 —
0.875)(0.375) = 3.05 in? (19.679 cm?). The stress s = P,/3.05 = 22,000 1b/in* (151,690.0
kPa); P,= 67,100 Ib (298,460.0 N).

At bb, tesidual tension = 84P, net area = (9 — 1.75)(0.375) = 2.72 in? (17.549 cm?);
s =%%4P,/2.72 =22,000; P,= 67,300 1b (299,350.0 N).

At cc, residual tension = %P, net area = (9 — 2.625)(0.375) = 2.39 in? (15.420 cm?);
s =%P,/2.39=22,000; P,= 78,900 1b (350,947.0 N).

3. Select the lowest of the five computed values
as the allowable load
Thus, P = 59,700 Ib (265,545.6 N).

DESIGN OF A BUTT SPLICE

A tension member in the form of a 10 x 2 in (254.0 x 12.7 mm) steel plate is to be spliced
with %-in (22.23-mm) rivets. Design a butt splice for the maximum load the member may

carry.

Calculation Procedure:

1. Establish the design load

In a butt splice, the load is transmitted from one member to another through two auxiliary

plates called cover, strap, or splice plates. The rivets are therefore in double shear.
Establish the design load, P 1b (N), by computing the allowable load at a cross section

having one rivet hole. Thus net area = (10 — 1)(0.5) = 4.5 in? (29.03 cm?). Then P =

4.5(22,000) = 99,000 Ib (440,352.0 N).

2. Determine the number of rivets required

Applying the values of rivet capacity found in an earlier calculation procedure in this sec-
tion of the handbook, determine the number of rivets required. Thus, since the rivets are
in double shear, R, = 18,040 1b (80,241.9 N); R, = 42,440(0.5) = 21,220 1b (94,386.6 N).
Then 99,000/18,040 = 5.5 rivets; use the next largest whole number, or 6 rivets.

3. Select a trial pattern for the rivets; investigate the tensile stress
Conduct this investigation of the tensile stress in the main plate at each row of rivets.

The trial pattern is shown in Fig. 56. The rivet spacing satisfies the requirements of the
AISC Specification. Record the calculations as shown:

Residual tension in Net area,
Section  main plate, 1b (N) + in? (cm?) = Stress, lb/in? (kPa)
aa 99,000 (440,352.0) 4.5(29.03) 22,000 (151,690.0)
bb 82,500 (366,960.0) 4.0 (25.81) 20,600 (142,037.0)

ce 49,500 (220,176.0) 3.5(22.58) 14,100 (97,219.5)
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Study of the above computations shows that the rivet pattern is satisfactory.

4. Design the splice plates

To the left of the centerline, each splice plate bears against the Jeft half of the rivet. There-
fore, the entire load has been transmitted to the splice plates at cc, which is the critical
section. Thus the tension in splice plate = 14(99,000) = 49,500 1b (220,176.0 N); plate
thickness required = 49,500/[22,000(7)] = 0.321 in (8.153 mm). Make the splice plates
10 x % in (254.0 x 9.53 mm).

DESIGN OF A PIPE JOINT

A steel pipe 5 ft 6 in (1676.4 mm) in diameter must withstand a fluid pressure of
225 Ibfin? (1551.4 kPa). Design the pipe and the longitudinal lap splice, using %-in
(19.05-mm) rivets.

Calculation Procedure:

1. Evaluate the hoop tension in the pipe

Let L denote the length (Fig. 57) of the repeating group of rivets. In this case, this equals
the rivet pitch. In Fig. 57, let T denote the hoop tension, in pounds (newtons), in the dis-
tance L. Evaluate the tension, using 7= pDL/2, where p = internal pressure, ib/in? (kPa);
D = inside diameter of pipe, in (mm); L = length considered, in (mm). Thus, 7 =
225(66)L/2 = 7425L.
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2. Determine the required
number of rows of rivets

Adopt, tentatively, the minimum allowable
pitch, which is 2 in (50.8 mm) for %-in
(19.05-mm) rivets. Then establish a feasible
rivet pitch. From an earlier calculation pro-
cedure in this section, R, = 6630 Ib
(29,490.0 N). Then T = 7425(2) = 6630n; n
=2.24. Use the next largest whole number of
rows, or three rows of rivets. Also, L., =
3(6630)/7425 = 2.68 in (68.072 mm). Use a
2%-in (63.5-mm) pitch, as shown in Fig.
57a.

LA TR

3. Determine the plate thickness l
Establish the thickness ¢ in (mm) of the steel (63.5mm)
plates by equating the stress on the net sec- (a) Longitudinal pipe joint

tion to its allowable value. Since the holes
will be drilled, take '*/i6 in (20.64 mm) as
their diameter. Then 7= 22,00042.5 - 0.81)
= 7425(2.5); t=0.50 in (12.7 mm); use %-in
(12.7-mm) plates. Also, R, = 36,380(0.5) >

6630 1b (29,490.2 N). The rivet capacity is T T T 1 T
therefore limited by shear, as assumed. T P lT
D
(b) Free-body diagram of upper half
MOMENT ON R’VETED of pipe and contents
CONNECTION
FIGURE 57

The channel in Fig. 584 is connected to its
supporting column with %-in (19.05-mm)
rivets and resists the couple indicated. Com-
pute the shearing stress in each rivet.

Calculation Procedure:

1. Compute the polar moment of inertia of the rivet group

The moment causes the channel (Fig. 58) to rotate about the centroid of the rivet group
and thereby exert a tangential thrust on each rivet. This thrust is directly proportional to
the radial distance to the center of the rivet.

Establish coordinate axes through the centroid of the rivet group. Compute the polar
moment of inertia of the group with respect to an axis through its centroid, taking the
cross-sectional area of a rivet as unity. Thus, J = Z(x2 +)?) = 8(2.5)2 + 4(1.5)* + 4(4.5)* =
140 in® (903.3 cm?).

2. Compute the radial distance to each rivet .

Using the right-angle relationship, we see that ; = r, = (2.5 + 4.5%)%5 = 5.15 in (130.810
mm); r, = ry = (2.52 4+ 1.5%)%5 =2.92 in (74.168 mm).

3. Compute the tangential thrust on each rivet

Use the relation f = Mr/J. Since M = 12,000(8) = 96,000 lb-in (10,846.1 N-m),
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Ji=/2=96,000(5.15)/140 = 3530 1b (15,701.4 N); and f; = f; = 96,000(2.92)/140 = 2000
1b (8896.0 N). The directions are shown in Fig. 585.

4. Compute the shearing stress

Using s = P/A, we find s; = s, = 3530/0.442 = 7990 Ib/in? (55,090 kPa); also, s, = 53 =
2000/0.442 = 4520 b/in? (29,300 kPa).

5. Check the rivet forces

Check the rivet forces by summing their moments with respect to an axis through the cen-
troid. Thus M, = M, = 3530(5.15) = 18,180 in-Ib (2054.0 N-m); M, = M; =2000(2.92) =
5840in‘1b (659.8 N-m). Then EM = 4(18,180) + 4(5840) = 96,080 in'1b (10,855.1 N-m).

ECCENTRIC LOAD ON RIVETED
CONNECTION

Calculate the maximum force exerted on a rivet in the connection shown in Fig. 59a.

Calculation Procedure:

1. Compute the effective eccentricity

To account implicitly for secondary effects associated with an eccentrically loaded con-
nection, the AISC Manual recommends replacing the true eccentricity with an effective
eccentricity.

To compute the effective eccentricity, use e, = e, — (1 + n)/2, where e, = effective ec-
centricity, in (mm); e, = actual eccentricity of the load, in (mm); » = number of rivets in a
vertical row. Substituting gives e, = 8 — (1 + 3)/2 =6 in (152.4 mm).

2. Replace the eccentric load with an equivalent system
The equivalent system is comprised of a concentric load P Ib (N) and a clockwise mo-
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ment M inlb (N-m). Thus, P = 15,000 1b (66,720.0 N), M = 15,000(6) = 90,000 in‘lb
(10,168.2 N'm).

3. Compute the polar moment of inertia of the rivet group

Compute the polar moment of inertia of the rivet group with respect to an axis through its
centroid. Thus, J = 2(x? + ?) = 6(3)* + 4(4)? = 118 in? (761.3 cm?).

4. Resolve the tangential thrust on each rivet into its horizontal
and vertical components

Resolve the tangential thrust f 1b (N) on each rivet caused by the moment into its horizon-
tal and vertical components. f, and f,, respectively. These forces are as follows: f, =
MylJ and f, = Mx/J. Computing these forces for rivets 1 and 2 (Fig. 59) yields
=90 000(4)71 18 = 3050 Ib (13,566.4 N); £, = 90,000(3)7118 = 2290 1b (10,185.9 N).

5. Compute the thrust on each rivet caused by the concentric load
This thrust is £; = 15,000/6 = 2500 1b (11,120.0 N).

6. Combine the foregoing resulits to obtain the total force on the
rivets being considered
The total force F Ib (N) on rivets 1 and 2 is desired. Thus, F, =f, = 3050 1b (13,566.4 N);
F,=f,+f =2290 + 2500 = 4790 1b (21,305.9 N). Then F = [(3050)2 + (4790)2]0 5 = 5680
lb (25 264.6 N).

The above six steps comprise method 1. A second way of solving this problem,
method 2, is presented below.

The total force on each rivet may also be found by locating the instantaneous center of
rotation associated with this eccentric load and treating the connection as if it were sub-
jected solely to a moment (Fig. 59b).

7. Locate the instantaneous center of rotation
To locate this center, apply the relation # = J/(e,N), where N = total number of rivets and
the other relations are as given earlier. Then 2 = 118/[6(6)] = 3.28 in (83.31 m).
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8. Compute the force on the rivets

Considering rivets 1 and 2, use the equation F = My'/J, where ' = distance from the in-
stantaneous center of rotation O to the center of the given rivet, in. For rivets 1 and 2, 7' =
7.45 in (189.230 mm). Then F = 90,000(7.45)/118 = 5680 1b (25,264.6 N). The force on
rivet 1 has an action line normal to the radius OA.

DESIGN OF A WELDED LAP JOINT

The 5-in (127.0-mm) leg of a 5 x 3 x ¥ in (127.0 x 76.2 x 9.53 mm) angle is to be weld-
ed to a gusset plate, as shown in Fig. 60. The member will be subjected to repeated varia-
tion in stress. Design a suitable joint.

Calculation Procedure:

1. Determine the properties of the angle

In accordance with the AISC Specification, arrange the weld to have its centroidal axis
coincide with that of the member. Refer to the AISC Manual to obtain the properties of
the angle. Thus 4 = 2.86 in? (18.453 cm?); y, = 1.70 in (43.2 mm); y, = 5.00 — 1.70 = 3.30
in (83.820 mm).

2. Compute the design load and required weld length

The design load P 1b (N) = 4s = 2.86(22,000) = 62,920 1b (279,868.2 N). The AISC Spec-
ification restricts the weld size to %1 in (7.94 mm). Hence, the weld capacity = 5(600)
3000 1b/lin in (525,380.4 N/m); L = weld length, in (mm) = P/capacity, 1b/lin in =
62,920/3000 = 20.97 in (532.638 mm).

3. Compute the joint dimensions

In Fig. 60, set ¢ =5 in (127.0 mm), and compute a and b by applying the following equa-
tions: a = Ly,/w — ¢/2; b = Ly,/w — ¢/2. Thus, a = (20.97 x 3.30)/5 — %2 = 11.34 in
(288.036 mm); b = (20.97 x 1.70)/5 — %2 = 4.63 in (117.602 mm). Make a = 11.5 in
(292.10 mm) and b = 5 in (127.0 mm).

y\\
| P_
c | I W=5“
9 | - Y, (127 mm)
b 543« % in
(127x76.2x9.53 mm)

angle
FIGURE 60
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ECCENTRIC LOAD ON A WELDED
CONNECTION

The bracket in Fig. 61 is connected to its support with a %-in (6.35-mm) fillet weld. De-
termine the maximum stress in the weld.

Calculation Procedure: Y

o 10"

1. Locate the centroid of the (254 mm) )

weld group m 1235 e

Refer to the previous eccentric-load cal- . - A

culation procedure. This situation is anal-

ogous to that. Determine the stress by lo-

cating the instantaneous center of h i Centroid

rotation. The maximum stress occurs at 4 .,

and B (Fig. 61). (304.80m
Considering the weld as concentrated

along the edge of the supported member,

locate the centroid of the weld group by

taking moments with respect to line aa.

Thus m = 2(4)(2)/(12 + 2 x 4) = 0.8 in 4"

(20.32 mm). 41016 mm)

2. Replace the eccentric load

with an equivalent concentric FIGURE 61

load and moment

Thus P = 13,500 1b (60,048.0 N); M =

124,200 in-Ib (14,032.1 N'm).

3. Compute the polar moment of inertia of the weld group

This moment should be computed with respect to an axis through the centroid of the

weld group. Thus I, = (1/12)(12)® + 2(4)(6)* = 432 in® (7080.5 cm?®); I, = 12(0.8)* +

2(1/12)(4)* + 2(4%2 — 0.8)> = 29.9 in® (490.06 cm?). Then J = I, + I, = 461.9 in’

(7570.54 cm3).

4. Locate the instantaneous center of rotation O

This center is associated with this eccentric load by applying the equation # = J/(eL),

where e = eccentricity of load, in (mm), and L = total length of weld, in (mm). Thus, e =

10-0.8=9.2in (233.68 mm); L = 12 + 2(4) = 20 in (508.0 mm); then 4 = 461.9/[9.2(20)]

=2.51 in (63.754 mm).

5. Compute the force on the weld

Use the equation F = Mr'/J, Ib/lin in (N/m), where ' = distance from the instantaneous
center of rotation to the given point, in (mm). At 4 and B, ' = 8.28 in (210.312 mm); then
F=[124,200(8.28)]/461.9 = 2230 1b/lin in (390,532.8 N/m).

6. Calculate the corresponding stress on the throat
Thus, s = P/A = 2230/[0.707(0.25)] = 12,600 Ib/in? (86,877.0 kPa), where the value 0.707
is the sine of 45°, the throat angle.

m)

8



PART 2
STRUCTURAL STEEL DESIGN

Structural Steel Beams and Plate Girders

In the following calculation procedures, the design of steel members is executed in accor-
dance with the Specification for the Design, Fabrication and Erection of Structural Steel
Jfor Buildings of the American Institute of Steel Construction. This specification is pre-
sented in the AISC Manual of Steel Construction.

Most allowable stresses are functions of the yield-point stress, denoted as F), in the
Manual. The appendix of the Specification presents the allowable stresses associated with
each grade of structural steel together with tables intended to expedite the design. The
Commentary in the Specification explains the structural theory underlying the Specifica-
tion.

Unless otherwise noted, the structural members considered here are understood to be
made of ASTM A36 steel, having a yield-point stress of 36,000 1b/in? (248,220.0 kPa).

The notational system used conforms with that adopted earlier, but it is augmented to
include the following: A4, = area of flange, in?> (cm?); A, = area of web, in> (cm?);
by= width of flange, in (mm); d = depth of section, in (mm); d,, = depth of web, in (mm);
1= thickness of flange, in (mm). t,, = thickness of web, in (mm); L’ = unbraced length of
compression flange, in (mm); £, = yield-point stress, Ib/in? (kPa).

MOST ECONOMIC SECTION FOR A BEAM
WITH A CONTINUOUS LATERAL SUPPORT
UNDER A UNIFORM LOAD

A beam on a simple span of 30 ft (9.2 m) carries a uniform superimposed load of 1650
Ib/lin ft (24,079.9 N/m). The compression flange is laterally supported along its entire
length. Select the most economic section.

Calculation Procedure:

1. Compute the maximum bending moment and the required
section modulus
Assume that the beam weighs 50 Ib/lin ft (729.7 N/m) and satisfies the requirements of a
compact section as set forth in the Specification.

The maximum bending moment is M = (1/8)wL2 = (1/8)(1700)(30)3(12) = 2,295,000
inIb (259,289.1 N'm).

Referring to the Specification shows that the allowable bending stress is 24,000 1b/in?
(165,480.0 kPa). Then S = M/f'= 2,295,000/24,000 = 95.6 in> (1566.88 cm?).

2. Select the most economic section
Refer to the AISC Manual, and select the most economic section. Use W18 x 55 =

1.88
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98.2 in® (1609.50 cm?); section compact. The disparity between the assumed and actual
beam weight is negligible.

A second method for making this selection is shown below.
3. Calculate the total load on the member
Thus, the total load = W= 30(1700) = 51,000 1b (226,848.0 N).
4. Select the most economic section
Refer to the tables of allowable uniform loads in the Manual, and select the most econom-
ic section. Thus use W18 x 55; W,y = 52,000 1b (231,296.0 N). The capacity of the
beam is therefore slightly greater than required.

MOST ECONOMIC SECTION FOR A BEAM
WITH INTERMITTENT LATERAL SUPPORT
UNDER UNIFORM LOAD

A beam on a simple span of 25 ft (7.6 m) carries a uniformly distributed load, including
the estimated weight of the beam, of 45 kips (200.2 kN). The member is laterally support-
ed at 5-ft (1.5-m) intervals. Select the most economic member (@) using A36 steel; (b) us-
ing A242 steel, having a yield-point stress of 50,000 Ib/in?> (344,750.0 kPa) when the
thickness of the metal is % in (19.05 mm) or less.

Calculation Procedure:

1. Using the AISC allowable-load tables, select the most economic
member made of A36 steel

After a trial section has been selected, it is necessary to compare the unbraced length L' of
the compression flange with the properties L. and L, of that section in order to establish
the allowable bending stress. The variables are defined thus: L, = maximum unbraced
length of the compression flange if the allowable bending stress = 0.66f,, measured in ft
(m); L, = maximum unbraced length of the compression flange, ft (m), if the allowable
bending stress is to equal 0.60,.

The values of L, and L, associated with each rolled section made of the indicated
grade of steel are recorded in the allowable-uniform-load tables of the AISC Manual. The
L_ value is established by applying the definition of a laterally supported member as pre-
sented in the Specification. The value of L, is established by applying a formula given in
the Specification.

There are four conditions relating to the allowable stress:

Condition Allowable stress

Compact section; L' =< L, 0.66f,

Compact section: L. <L' = L, 0.60f,

Noncompact section: L' < L, 0.60f,

L'>L, Apply the Specification formula—use the larger value

obtained when the two formulas given are applied.

The values of allowable uniform load given in the AISC Manual apply to beams of
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A36 steel satisfying the first or third condition above, depending on whether the section is
compact or noncompact.

Referring to the table in the Manual, we see that the most economic section made of
A36 steel is W16 x 45; W, = 46 kips (204.6 kN), where W, = allowable load on the
beam, kips (kN). Also, L. = 7.6 > 5. Hence, the beam is acceptable.

2. Compute the equivalent load for a member of A242 steel

To apply the AISC Manual tables to choose a member of A242 steel, assume that the
shape selected will be compact. Transform the actual load to an equivalent load by apply-
ing the conversion factor 1.38, that is, the ratio of the allowable stresses. The conversion
factors are recorded in the Manual tables. Thus, equivalent load = 45/1.38 = 32.6 kips
(145.0 N).

3. Determine the highest satisfactory section

Enter the Manual allowable-load table with the load value computed in step 2, and select
the lightest section that appears to be satisfactory. Try W16 x 36; W, = 36 kips (160.1
N). However, this section is noncompact in A242 steel, and the equivalent load of 32.6
kips (145.0 N) is not valid for this section.

4. Revise the equivalent load

To determine whether the W16 x 36 will suffice, revise the equivalent load. Check the L,
value of this section in A242 steel. Then equivalent load = 45/1.25 = 36 kips (160.1 N),
L,=63f(1.92m)>S5 ft (1.5 m); use W16 x 36.

5. Verify the second part of the design

To verify the second part of the design, calculate the bending stress in the W16 x 36,
using § = 56.3 in® (922.76 cm?®) from the Manual. Thus M = (/)WL =
(1/8)(45,000)(25)(12) = 1,688,000 in'lb (190,710.2 N-m); f = M/S = 1,688,000/56.3 =
30,000 Ib/in? (206,850.0 kPa). This stress is acceptable.

DESIGN OF A BEAM WITH REDUCED
ALLOWABLE STRESS

The compression flange of the beam in Fig. 1a will be braced only at points 4, B, C, D,
and E. Using AISC data, a designer has selected W21 x 55 section for the beam. Verify
the design.

Calculation Procedure:

1. Calculate the reactions; construct the shear
and bending-moment diagrams
The results of this step are shown in Fig. 1.

2. Record the properties of the selected section
Using the AISC Manual, record the following properties of the 21WF55 section:
§=109.7 in* (1797.98 cm?); I, = 44.0 in* (1831.41 cm*); b, = 8.215 in (208.661 mm);
;= 0.522 in (13.258 mm); d = 20.80 in (528.32 mm); £, = 0.375 in (9.525 mm);
d/A; = 4.85/in (0.1909/mm); L, = 8.9 ft (2.71 m); L, = 9.4 ft (2.87 m).

Since L' > L,, the allowable stress must be reduced in the manner prescribed in the
Manual.
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FIGURE 1

3. Calculate the radius of gyration

Calculate the radius of gyration with respect to the y axis of a T section comprising the
compression flange and one-sixth the web, neglecting the area of the fillets. Referring to
Fig. 2, we see 4,=8.215(0.522) = 4.29 in? (27.679 cm?); (1/6)4,, = (1/6)(19.76)(0.375) =
1.24; 47 = 5.53 in? (35.680 cm?); I = 0.51, of the section = 22.0 in* (915.70 cm?*);
r=(22.0/5.53)"5 = 1.99 in (50.546 mm).
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8.215" _0522" 4. Calculate the allowable
I(zos.se mml' _(13.258 mm) stress in each interval
R T between lateral supports
By applying the provisions of the
Manual, calculate the allowable stress
in each interval between lateral sup-
19.756" ports, and compare this with the actual
0375" [(501.802 mm} stress. For A36 steel, the Manual for-
|(9‘525 mm mula (4) reduces. to fi = 22,000 —
| 0.679(L'/r)*/C, 1b/in? (kPa). By Manu-
I al formula (5), £, = 12,000,000/(L'd/Ay)
1l Ib/in? (kPa). Set the allowable stress
N | I equal to the greater of these values.

" For interval 4B: L' =8 ft (2.4 m) <

s ) L. - futow = 24,000 Ib/in? (165,480.0

kPa); frnx = 148,000(12)/109.7 =

FIGURE 2. Dimensions of W21 x 55, 16,200 1b/in? (111,699.0 kPa)—this is
acceptable.

For interval BC: L'/r = 15(12)/1.99

= 90.5; M/M, = 95/(-148) =

-0.642; C, = 1.75 — 1.05(-0.642) +

0.3(-0.642)> = 2.55; .. set C, = 2.3; f; = 22,000 — 0.679(90.5)*/2.3 = 19,600 1b/in’

(135,142.0 kPa); f, = 12,000,000/[15(12)(4.85)] = 13,700 1b/in? (94,461.5 kPa); f,. =

16,200 < 19,600 1b/in? (135,142.0 kPa). This is acceptable.

Interval CD: Since the maximum moment occurs within the interval rather than at a
boundary section, C, = 1; L'/r = 16.5(12)/1.99 = 99.5; f; = 22,000 — 0.679(99.5)* = 15,300
1b/in? (105,493.5 kPa); £, = 12,000,000/[16.5(12)(4.85)] = 12,500 1b/in? (86,187.5 kPa);
Jmax = 132,800(12)/109.7 = 14,500 < 15,300 Ib/in? (105,493.5 kPa). This stress is accept-
able.

Interval DE: The allowable stress is 24,000 Ib/in? (165,480.0 kPa), and the actual
stress is considerably below this value. The W21 x 55 is therefore satisfactory. Where de-
flection is the criterion, the member should be checked by using the Specification.

1 T section

20.80"
(528.32 mm)

il

DESIGN OF A COVER-PLATED BEAM

Following the fabrication of a W18 x 60 beam, a revision was made in the architectural
plans, and the member must now be designed to support the loads shown in Fig. 3a. Cov-
er plates are to be welded to both flanges to develop the required strength. Design these
plates and their connection to the W shape, using fillet welds of A233 class E60 series
electrodes. The member has continuous lateral support.

Calculation Procedure:

1. Construct the shear and bending-moment diagrams
These are shown in Fig. 3. Also, My = 340.3 ftkips (461.44 kN-m).

2. Calculate the required section modulus, assuming the built-up
section will be compact
The section modulus S = M/f=340.3(12)/24 = 170.2 in> (2789.58 cm?).
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(c) Bending-moment diagram
FIGURE 3

3. Record the properties of the beam section
Refer to the AISC Manual, and record the following properties for the W18 x 60; d =
18.25 in (463.550 mm); b= 7.56 in (192.024 mm); #,= 0.695 in (17.653 mm); I = 984 in*
(40.957 cm#); S = 107.8 in® (1766.84 cm®).
4. Select a trial section
Apply the approximation A = 1.05(S — Syr)/dyy, where 4 = area of one cover plate, in?
(em?); § = section modulus required, in® (cm?); Sy = section modulus of wide-flange
shape, in® (cm?®); dyr = depth of wide-flange shape, in (mm). Then 4 = [1.05(170.2 —
107.8))/18.25 = 3.59 in? (23.163 cm?).

Try 10 x % in (254.0 x 9.5 mm) plates with 4 = 3.75 in? (24.195 cm?). Since the beam
flange is 7.5 in (190.50 mm) wide, ample space is available to accommodate the welds.
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5. Ascertain whether the assumed size of the cover plates
satisfies the AISC Specification

Using the appropriate AISC Manual section, we find 7.56/0.375 = 20.2 < 32, which is ac-
ceptable; 2(10 — 7.56)/0.375 = 3.25 < 16, which is acceptable.

6. Test the adequacy of the trial section

Calculate the section modulus of the trial section. Referring to Fig. 4a, we see ] = 984 +
2(3.75)(9.31)* — 1634 in* (68,012.1 em®); § = I/c = 1634/9.5 = 172.0 in® (2819.08 cm?).
The reinforced section is therefore satisfactory.

7. Locate the points at which the cover plates are not needed

To locate the points at which the cover plates may theoretically be dispensed with, calcu-
late the moment capacity of the wide-flange shape alone. Thus, M = f5 = 24(107.8)/12 =
215.6 ft-kips (292.3 kN'm).

8. Locate the points at which the computed moment occurs
These points are F and G (Fig. 3). Thus, My = 35.2y, — 8(y; — 4) — %(1.2),%) = 215.6;
¥> =825 ft (2.515 m); M =30.8y, — Y4(1.2y3) = 215.6; y, = 8.36 ft (2.548 m).
Alternatively, locate F by considering the area under the shear diagram between E and
F. Thus My = 340.3 - %4(1.2y3) = 215.6; y; = 14.42 ft (4.395 m); y, = 22.67 — 1442 =
8.25 ft (2.515 m).
For symmetry, center the cover plates about midspan, placing the theoretical cutoff
points at 8 ft 3 in (2.51 m) from each support.

"

Plate 10 x ¥%
(254

E0375"
(9.53 mm)

{231.775mm)

(Wi8 x60)

Piate 10 x %"5

(254 X 9.53 mm) (a) Reinforced section

I'~-8" (508 mm) g

NTS. (203.2mm)
— /4 E 1%
Cover plate N (381 mm)

2222222 T | 7 s 2L \‘
(6.35mm)

1I8WF <

- A
v L

(b) Welding of cover plates
FIGURE 4
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9. Calculate the axial force in the cover plate

Calculate the axial force P 1b (N) in the cover plate at its end by computing the mean
bending stress. Determine the length of fillet weld required to transmit this force to the W
shape. Thus f;..n = My/I = 215,600(12)(9.31)/1634 = 14,740 1b/in? (101,632.3 kPa). Then
P = Af o = 3.75(14,740) = 55,280 1b (245,885.4 N). Use a Y4-in (6.35-mm) fillet weld,
which satisfies the requirements of the Specification. The capacity of the weld = 4(600) =
2400 Ib/lin in (420,304.3 N/m). Then the length L required for this weld is L =
55,280/2400 = 23.0 in (584.20 mm).

10. Extend the cover plates

In accordance with the Specification, extend the cover plates 20 in (508.0 mm) beyond
the theoretical cutoff point at each end, and supply a continuous Y4-in fillet weld along
both edges in this extension. This requirement yields 40 in (1016.0 mm) of weld as com-
pared with the 23 in (584.2 mm) needed to develop the plate.

11. Calculate the horizontal shear flow at the inner surface

of the cover plate

Choose F or G, whichever is larger. Design the intermittent fillet weld to resist this shear
flow. Thus V=352 — 8 — 1.2(8.25) = 17.3 kips (76.95 kN); Vs =-30.8 + 1.2(8.36) =
—20.8 kips (-92.51 kN). Then ¢ = VQ/I = 20,800(3.75)(9.31)/1634 = 444 Ib/lin in
(77,756.3 N/m).

The Specification calls for a minimum weld length of 1.5 in (38.10 mm). Let s denote
the center-to-center spacing as governed by shear. Then s = 2(1.5)(2400)/444 = 16.2 in
(411.48 mm). However, the Specification imposes additional restrictions on the weld
spacing. To preclude the possibility of error in fabrication, provide an identical spacing at
the top and bottom. Thus, s, = 21(0.375) = 7.9 in (200.66 mm). Therefore, use a Y4-in
(6.35-mm) fitlet weld, 1.5 in (38.10 mm) long, 8 in (203.2 mm) on centers, as shown in
Fig. 4a.

DESIGN OF A CONTINUOUS BEAM

The beam in Fig. 5a is continuous from 4 to D and is laterally supported at 5-ft (1.5-m)
intervals. Design the member.

Calculation Procedure:

1. Find the bending moments at the interior supports; calculate
the reactions and construct shear and bending-moment diagrams
The maximum moments are +101.7 ft-kips (137.9 kN'm) and -130.2 ft-kips (176.55
kN-m).

2. Calculate the modified maximum moments

Calculate these moments in the manner prescribed in the AISC Specification. The clause
covering this calculation is based on the postelastic behavior of a continuous beam. (Refer
to a later calculation procedure for an analysis of this behavior.)

Modified maximum moments: +101.7 + 0.1(0.5)(115.9 + 130.2) = +114.0 ftkips
(154.58 kN'm); 0.9(-130.2) = -117.2 ft-kips (-158.92 kN'm); design moment = 117.2
ft-kips (158.92 kN'm).

3. Select the beam size
Thus, S = Mif=117.2(12)/24 = 58.6 in® (960.45 cm?). Use W16 x 40 with S = 64.4 in?
(1055.52 em?); L. = 7.6 ft (2.32 m).
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FIGURE 5

SHEARING STRESS IN A BEAM—
EXACT METHOD

Calculate the maximum shearing stress in a W18 x 55 beam at a section where the verti-
cal shear is 70 kips (311.4 kN).

Calculation Procedure:

1. Record the relevant properties of the member
The shearing stress is a maximum at the centroidal axis and is given by v = VQ/(If). The
static moment of the area above this axis is found by applying the properties of the WT9 x
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27.5, which are presented in the AISC (54.86 mm)
Manual. Note that the T section consid- — — o6
ered is one-half the wide-flange section CA.
being used. See Fig. 6. "
The properties of these sections are I, WT9X275 y (230.2mm)
= 890 in* (37,044.6 cm*); A = 8.10 in? 0.39" "
2y = : . | L
(52.261 cm?); t,, = 0.39 in (9.906 mm); 5906 mm)
Y =9.06-2.16=6.90in (175.26 mm).
2. Calculate the shearing FIGURE 6

stress at the centroidal axis
Substituting gives Q = 8.10(6.90) = 55.9
in® (916.20 cm?); then v = 70,000(55.9)/
[890(0.39)] = 11,270 Ib/in? (77,706.7
kPa).

SHEARING STRESS IN A BEAM—
APPROXIMATE METHOD

Solve the previous calculatlon procedure, using the approx1mate method of determining
the shearing stress in a beam.

Calculation Procedure:

1. Assume that the vertical shear is resisted solely by the web
Consider the web as extending the full depth of the section and the shearing stress as uni-
form across the web. Compare the results obtained by the exact and the approximate
methods.

2. Compute the shear stress
Take the depth of the web as 18.12 in (460.248 mm), v = 70,000/[18.12(0.39)] = 9910
1b/in? (68,329.45 kPa). Thus, the ratio of the computed stresses is 11,270/9910 = 1.14.

Since the error inherent in the approximate method is not unduly large, this method is
applied in assessing the shear capacity of a beam. The allowable shear ¥ for each rolled
section is recorded in the allowable-uniform-load tables of the AISC Manual.

The design of a rolled section is governed by the shearing stress only in those in-
stances where the ratio of maximum shear to maximum moment is extraordinarily large.
This condition exists in a heavily loaded short-span beam and a beam that carries a large
concentrated load near its support.

MOMENT CAPACITY OF A WELDED
PLATE GIRDER

A welded plate girder is composed of a 66 x ¥ in (1676.4 x 9.53 mm) web plate and two
20 x % in (508.0 x 19.05 mm) flange plates. The unbraced length of the compression
flange is 18 ft (5.5 m). If C, = 1, what bending moment can this member resist?
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Calculation Procedure:

1. Compute the properties of the section
The tables in the AISC Manual are helpful in calculating the moment of inertia. Thus 4,
=15 in? (96.8 cm?); 4,, = 24.75 in? (159.687 cm?); I = 42,400 in* (176.481 dm*); S =
1256 in® (20,585.8 cm3)

For the T section comprising the flange and one-sixth the web, 4 = 15+ 4.13 =19.13
in? (123.427 cm?); then I = (1/12)(0.75)(20)* = 500 in* (2081.1 dm*); r = (500/19.13)%5 =
5.11in (129.794 mm); L'/r = 18(12)/5.11 = 42.3.

2. Ascertain if the member satisfies the AISC Specification
Let A denote the clear distance between flanges, in (cm). Then: flange, 12(20)/0.75 = 13.3
< 16—this is acceptable; web, A/t,, = 66/0.375 = 176 < 320—this is acceptable.

3. Compute the allowable bending stress

Use f; = 22,000 — 0.679(L'/r)*/C,, or f; = 22,000 — 0.679(42.3)? = 20,800 lb/in?
(143,416.0 kPa); f; = 12,000,000/(L'd/4) = 12,000,000(15)/[18(12)(67. 5] = 12,300
Ib/in? (84,808.5 kPa). Therefore, use 20, 800 1b/in? (143,416.0 kPa) because it is the larger
of the two stresses.

4. Reduce the allowable bending stress In accordance with the
AISC Specification

Using the equation given in the Manual yields f; = 20,800{1 — 0.005(24.75/15)[176 —
24,000/(20,800)°-5]} = 20,600 Ib/in? (142,037.0 kPa).

5. Determine the allowable bending moment
Use M =35 =20.6(1256)/12 = 2156 ft-kips (2923.5 kN-m).

ANALYSIS OF A RIVETED PLATE GIRDER

A plate girder is composed of one web plate 48 x 3% in (1219.2 x 9.53 mm); four flange
angles 6 x 4 x % in (152.4 x 101.6 x 19.05 mm); two cover plates 14 x Y% in (355.6 x 12.7
mm). The flange angles are set 48.5 in (1231.90 mm) back to back with their 6-in (152.4-
mm) legs outstanding; they are connected to the web plate by 7-in (22.2-mm) rivets. If
the member has continuous lateral support, what bending moment may be applied? What
spacing of flange-to-web rivets is required in a panel where the vertical shear is 180 kips
(800.6 kN)?

Calculation Procedure:

1. Obtain the properties of the angles from the AISC Manual
Record the angle dimensions as shown in Fig. 7.

2. Check the cover plates for compliance with the
AISC Specification
The cover plates are found to comply with the pertinent sections of the Specification.

3. Compute the gross flange area and rivet-hole area

Ascertain whether the Specification requires a reduction in the flange area. Therefore
gross flange area = 2(6.94) + 7.0 = 20.88 in® (134.718 cm?); area of rivet holes =
2(%)(D)4(%)(1) = 4.00 in? (25.808 cm?); allowable area of holes = 0.15(20.88) = 3.13.
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/-—Plote 14 x ' (355.6 X 12.7 mr’

L .
6xax%" CA of angles3 | 24.50"
papst| (1524 X1016 X 9 (622 30 mm)
(615,95 )| 19.05mm) angle 237"
) Web plate (588.51 mm)
48 x 3/5" 9 9
{1219.2 X 9.53 mm) CA of girder

FIGURE 7

The excess area = hole area — allowable area = 4.00 — 3.13 = 0.87 in? (5.613 cm?). Con-
sider that this excess area is removed from the outstanding legs of the angles, at both the
top and the bottom.

4. Compute the moment of inertia of the net section

in* dm*

One web plate, [, 3,456 ) 14.384
Four flange angles, I, 35 0.1456

Ay? = 4(6.94)(23.17)? 14,900 62.0184
Two cover plates:

Ay* = 2(7.0)(24.50)% 8,400 34.9634
I of gross section 26,791 111.5123
Deduct 2(0.87)(23.88)? for excess area 991 4.12485
1 of net section 25,800 107.387

5. Establish the allowable bending stress

Use the Specification. Thus h/t, = (48.5 — 8)/0.375 < 24,000/(22,000)°%3; .-. 22,000 1b/in®
(151,690.0 kPa). Also, M = fT/c = 22(25,800)/[24.75(12)] = 1911 ft-kips (2591.3 kN-m).
6. Calculate the horizontal shear flow to be resisted

Here Q of flange = 13.88(23.17) + 7.0(24.50) — 0.87(23.88) = 472 in® (7736.1 cm3); ¢ =
VQ/T=180,000(472)/25,800 = 3290 Ib/lin in (576,167.2 N/m).

From a previous calculation procedure, R;. = 18,040 Ib (80,2419 N); R, =
42,440(0.375) = 15,900 1b (70,723.2 N); s = 15,900/3290 = 4.8 in (121.92 mm), where s =
allowable rivet spacing, in (mm). Therefore, use a 4%-in (120.65-mm) rivet pitch. This
satisfies the requirements of the Specification.

Note: To determine the allowable rivet spacing, divide the horizontal shear flow into
the rivet capacity.

DESIGN OF A WELDED PLATE GIRDER

A plate girder of welded construction is to support the loads shown in Fig. 8a. The dis-
tributed load will be applied to the top flange, thereby offering continuous lateral support.
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At its ends, the girder will bear on masonry buttresses. The total depth of the girder is re-
stricted to approximately 70 in (1778.0 mm). Select the cross section, establish the spac-
ing of the transverse stiffeners, and design both the intermediate stiffeners and the bearing
stiffeners at the supports.

Calculation Procedure:

1. Construct the shear and bending-moment diagrams
These diagrams are shown in Fig. 8.

2. Choose the web-piate dimensions

Since the total depth is limited to about 70 in (1778.0 mm), use a 68~in (1727.2-mm) deep
web plate. Determine the plate thickness, using the Specification limits, which are a slen-
derness ratio A/t, of 320. However, if an allowable bending stress of 22,000 Ib/in?
(151,690.0 kPa) is to be maintained, the Specification imposes an upper limit of
24,0001(22,000)%5 = 162. Then #,, = /162 = 68/162 = 0.42 in (10.668 mm); use a V1e-in
(11.112-mm) plate. Hence, the area of the web 4,,=29.75 in? (191.947 cm?).

3. Select the flange plates
Apply the approximation 4, = Mc/(2f?) — A,/6, where y = distance from the neutral axis
to the centroidal axis of the flange, in (mm).

Assume 1-in (25.4-mm) flange plates. Then 4, = 4053(12)(35)/[2(22)(34.5)"] -
29.75/6 = 27.54 in? (177.688 cm?). Try 22 x 1% in (558.8 x 31.75 mm) plates with 4,=
27.5 in? (177.43 cm?). The width-thickness ratio of projection = 11/1.25 = 8.8 < 16. This
is acceptable.

Thus, the trial section will be one web plate 68 x 716 in (1727 x 11.11 mm); two flange
plates 22 x 1% in (558.8 x 31.75 mm).

4. Test the adequacy of the trial section

For this test, compute the maximum flexural and shearing stresses. Thus, [/
(1/12)(0.438)(68)° + 2(27.5)(34.63)> = 77,440 in® (1,269,241.6 cm®); f = Mc/l
4053(12)(35.25)/77,440 = 22.1 kips/in? (152.38 MPa). This is acceptable. Also, v
207/29.75 = 6.96 < 14.5 kips/in® (99.98 MPa). This is acceptable. Hence, the trial section
is satisfactory.

5. Determine the distance of the stiffeners from the girder ends
Refer to Fig. 84 for the spacing of the intermediate stiffeners. Establish the length of the
end panel AE. The Specification stipulates that the smaller dimension of the end panel
shall not exceed 11,000(0.438)/(6960)°3 = 57.8 < 68 in (1727.2 mm). Therefore, provide
stiffeners at 56 in (1422.4 mm) from the ends.

6. Ascertain whether additional intermediate stiffeners

are required

See whether stiffeners are required in the interval EB by applying the Specification crite-
ria.

Stiffeners are not required when A/z,, < 260 and the shearing stress within the panel is
below the value given by either of two equations in the Specification, whichever equation
applies. Thus EB = 396 — (56 + 96) = 244 in (6197.6 mm); h/t,, = 68/0.438 = 155 < 260;
this is acceptable. Also, a/h = 244/68 = 3.59.

In lieu of solving either of the equations given in the Specification, enter the table of
a/h, hit,, values given in the AISC Manual to obtain the allowable shear stress. Thus, with
alh >3 and hit,, = 155, V0w = 3.45 kips/in? (23.787 MPa) from the table.

o
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At E, V = 207 — 4.67(4) = 188 kips (836.2 kN); v = 188/29.75 = 6.32 kips/in?
(43.576 MPa) > 3.45 kips/in? (23.787 MPa); therefore, intermediate stiffeners are re-
quired in EB.

7. Provide stiffeners, and investigate the suitability of their
tentative spacing
Provide stiffeners at F, the center of EB. See whether this spacing satisfies the Specifica-
tion. Thus [260/(k/2,))? = (260/155)* = 2.81; a/h = 122/68 = 1.79 < 2.81. This is accept-
able.

Entering the table referred to in step 6 with a/h = 1.79 and A/t,, = 155 shows 0,5,y =
7.85 > 6.32. This is acceptable.

Before we conclude that the stiffener spacing is satisfactory, it is necessary to investi-
gate the combined shearing and bending stress and the bearing stress in interval EB.

8. Analyze the combination of shearing and bending stress

This analysis should be made throughout EB in the light of the Specification require-
ments. The net effect is to reduce the allowable bending moment whenever V >
0.6¥ 1ow- Thus, Vo = 7.85(29.75) = 234 kips (1040.8 kN); and 0.6(234) = 140 kips
(622.7 kN).

In Fig. 8D, locate the boundary section G where ¥ = 140 kips (622.7 kN). The allow-
able moment must be reduced to the left of G. Thus, 4G = (207 - 140)/4 = 16.75 ft (5.105
m); Mg = 2906 fikips (3940.5 KN-m); Mz = 922 ftkips (1250.2 kN'm). At G, M0, =
4053 ftkips (5495.8 kKN'm). At E, £, = [0.825 — 0.375(188/234)](36) = 18.9 kips/in®
(130.31 MPa); M0, = 18.9(77,440)/{35.25(12)] = 3460 ft-kips (4691.8 kKN-m).

In Fig. 8¢, plot points E’ and G’ to represent the allowable moments and connect these
points with a straight line. In all instances, M < M, ;o

9. Use an alternative procedure, if desired
As an alternative procedure in step 8, establish the interval within which M > 0.75M,,
and reduce the allowable shear in accordance with the equation given in the Specification.

10. Compare the bearing stress under the uniform load

with the allowable stress

The allowable stress given in the Specification f, yiow = [5.5 + 4/(a/h)?}10,000/(h/t,)?
kips/in? (MPa), or, for this girder, f, syow = (5.5 + 4/1.79%)10,000/155% = 2.81 kips/in?
(19.374 MPa). Then f;, = 4/[12(0.438)] = 0.76 kips/in® (5.240 MPa). This is acceptable.
The stiffener spacing in interval EB is therefore satisfactory in all respects.

11. Investigate the need for transverse stiffeners
in the center interval
Considering the interval BC, V= 32 kips (142.3 kN); v = 1.08 kips/in? (7.447 MPa); a/h =
192/68 = 2.82 = [260/(h/t,,)]>

The Manual table used in step 6 shows that vy, > 1.08 kips/in® (7.447 MPa); f; iiow =
(5.5 + 4/2.82%)10,000/155% = 2.49 kips/in® (17.169 MPa) > 0.76 kips/in® (5.240 MPa).
This is acceptable. Since all requirements are satisfied, stiffeners are not needed in inter-
val BC.

12. Design the intermediate stiffeners in accordance

with the Specification

For the interval EB, the preceding calculations yield these values: v = 6.32 kips/in?
(43.576 MPa); v,,,, = 7.85 kips/in? (54.125 MPa). Enter the table mentioned in step 6
with a/h =1.79 and h/t,, = 155 to obtain the percentage of web area, shown in italics in the
table. Thus, 4, required = 0.0745(29.75)(6.32/7.85) = 1.78 in? (11.485 cm?). Try two
4 x Y4 in (101.6 x 6.35 mm) plates; 4, = 2.0 in? (12.90 cm?); width-thickness ratio =
4/0.25 = 16. This is acceptable. Also, (A/50)* = (68/50)* = 3.42 in* (142.351 cm?);
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I'=(1/12)(0.25)(8.44)* = 12.52 in* (521.121 cm®*) > 3.42 in* (142.351 cm*). This is ac-
ceptable.

The stiffeners must be in intimate contact with the compression flange, but they may
terminate 1% in (44.45 mm) from the tension flange. The connection of the stiffeners to
the web must transmit the vertical shear specified in the Specification.

13. Design the bearing stiffeners at the supports
Use the directions given in the Specification. The stiffeners are considered to act in con-
junction with the tributary portion of the web to form a column section, as shown in Fig.
9. Thus, area of web = 5.25(0.438) = 2.30 in? (14.839 cm?). Assume an allowable stress of
20 kips/in? (137.9 MPa). Then, plate area required = 207/20 — 2.30 = 8.05 in? (51.938
cm?).

Try two plates 10 x % in.(254.0 x 12.7
mm), and compute the column capacity of the
section. Thus, 4 = 2(10)(0.5) + 2.30 = 12.30
in? (79.359 cm?); 1= (1/12)(0.5)(20.44)* = 356 7" )
in* (1.4818 dm?); r = (356/12.30)°5 = 5.38 in J,Q bt
(136.652 mm); L/r = 0.75(68)/5.38 = 9.5. 0x % z

Enter the table of slenderness ratio and al- (254 x12.7 mm)
lowable stress in the Manual with the slender- /' 1e"®" Pla’e
ness ratio of 9.5, and obtain an allowable stress
of 21.2 kips/in? (146.17 MPa). Then f = |
207/12.30 = 16.8 kips/in? (115.84 MPa) < 21.2 |2 x g 11111 mm)
kips/in? (146.17 MPa). This is acceptable. =5.25"(133.35 mm)

Comput'e the bearing‘ stress in the stiffeners. FIGURE 9. Effective column section.
In computing the bearing area, assume that
each stiffener will he clipped 1 in (25.4 mm) to
clear the flange-to-web welding. Then f =
207/[2(9)(0.5)] = 23 kips/in® (158.6 MPa). The
Specification provides an allowable stress of
33 kips/in? (227.5 MPa).

The 10 x ¥ in (254.0 )( 12.7 mm) stiffeners at the supports are therefore satisfactory
with respect to both column action and bearing.

Steel Columns and Tension Members

The general remarks appearing at the opening of the previous part apply to this part as
well.

A column is a compression member having a length that is very large in relation to its
lateral dimensions. The effective length of a column is the distance between adjacent
points of contraflexure in the buckled column or in the imaginary extension of the buck-
led column, as shown in Fig. 10. The column length is denoted by L, and the effective
length by KL. Recommended design values of K are given in the AISC Manual.

The capacity of a column is a function of its effective length and the properties of its
cross section. It therefore becomes necessary to formulate certain principles pertaining to
the properties of an area.

Consider that the moment of inertia 7 of an area is evaluated with respect to a group of
concurrent axes. There is a distinct value of I associated with each axis, as given by earli-
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, er equations in this section. The major axis

/ is the one for which 7 is maximum; the mi-

_ nor axis is the one for which 7 is minimum.

7/ The major and minor axes are referred to

/ collectively as the principal axes.

_ KL With reference to the equation given

earlier, namely, I, = I, cos? @+ I, sin® 6 —

L KL P, sin 28, the orientation of the principal

L [ axes relative to the given x" and y’ axes is

[ found by differentiating [, with respect to

6, equating this derivative to zero, and

. solving for 6 to obtain tan 26 = 2P,/

(4, - I,), Fig. 15.

FIGURE 10. Effective column lengths. The following statements are corollar-

ies of this equation:

1. The principal axes through a given
point are mutually perpendicular, since
the two values of @ that satisfy this
equation differ by 90°.

. The product of inertia of an area with respect to its principal axes is zero.
. Conversely, if the product of inertia of an area with respect to two mutually perpendi-
cular axes is zero, these are principal axes.
4. An axis of symmetry is a principal axis, for the product of inertia of the area with re-
spect to this axis and one perpendicular thereto is zero.

Let 4, and 4, denote two areas, both of which have a radius of gyration r with respect
to a given axis. The radius of gyration of their composite area is found in this manner: I, =
L+ L= A4,r2 4 4,2 = (4, + A,)r? But 4, + 4, = A,. Substituting gives I, = A, r?; there-
fore, r,=r.

This result illustrates the following principle: If the radii of gyration of several areas
with respect to a given axis are all equal, the radius of gyration of their composite area
equals that of the individual areas.

The equation I, = 31, + 3Ak*, when applied to a single area, becomes I, = I, + AR
Then Ar2 = Ard + AR2, or r, = (r} + k2)°. If the radius of gyration with respect to a cen-
troidal axis is known, the radius of gyration with respect to an axis parallel thereto may be
readily evaluated by applying this relationship.

The Euler equation for the strength of a slender column reveals that the member tends
to buckle about the minor centroidal axis of its cross section. Consequently, all column
design equations, both those for slender members and those for intermediate-length mem-
bers, relate the capacity of the column to its minimum radius of gyration. The first step in
the investigation of a column, therefore, consists in identifying the minor centroidal axis
and evaluating the corresponding radius of gyration.

w N

CAPACITY OF A BUILT-UP COLUMN

A compression member consists of two C15 x 40 channels laced together and spaced
10 in (254.0 mm) back to back with flanges outstanding, as shown in Fig. 11. What axial
load may this member carry if its effective length is 22 ft (6.7 m)?
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3

Calculation Procedure:

1. Record the properties of the s N A
individual channel : J—
Since x and y are axes of symmetry, they are
the principal centroidal axes. However, it is
not readily apparent which of these is the mi-
nor axis, and so it is necessary to calculate X
both r, and r,. The symbol r, without a sub-
script, is used to denote the minimum radius

<
of gyration, in inches (centimeters). o
Using the AISC Manual, we see that the —
channel properties are 4 = 11,70 in? (75.488 __I -1 -
em?); h = 0.78 in (19.812 mm); r, = 5.44 in hie— o
(138. 176 mm); r, = 0.89 in (22.606 mm). (254 mm)

2. Evaluate the minimum radius
of gyration of the built-up
section; determine the
slenderness ratio

Thus, r, = 5.44 in (138.176 mm); r, = (r +
5.78%)%3 > 5.78 in (146.812 mm); therefore, »
= 5.44 in (138.176 mm); KL/r = 22(12)/5.44
=48.5.

3. Determine the allowable stress in the column

Enter the Manual slenderness-ratio allowable-stress table with a slenderness ratio of 48.5
to obtain the allowable stress /= 18.48 Kips/in? (127.420 MPa). Then, the column capaci-
ty = P=Af=2(11.70)(18.48) = 432 kips (1921.5 kN).

FIGURE 11. Built-up column.

CAPACITY OF A DOUBLE-ANGLE
STAR STRUT

A star strut is composed of two 5 x 5 x ¥ in (127.0 x 127.0 % 9.53 mm) angles intermit-
tently connected by ¥s-in (9.53-mm) batten plates in both directions. Determine the ca-
pacity of the member for an effective length of 12 ft (3.7 m).

Calcuiation Procedure:

1. Identify the minor axis
Refer to Fig. 12a. Since p and ¢ are axes of symmetry, they are the principal axes; p is
manifestly the minor axis because the area lies closer to p than q.

2. Determine 2,

Refer to Fig. 125, where v is the major and z the minor axis of the angle section. Apply
Iy=1I, cos? @+ I, sin® @ — P, sin 26, and set P,, = 0 to get r? = rZ cos® 0 + r? sin®
therefore, r? sec? 6 — r? tan” 6. For an equal-leg angle, 8= 45°, and this equation reduces
torZ=2r2—rZ
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z y
q P
8 v
(b) Centroidal oxes
(a) Star strut of angle section
FIGURE 12

3. Record the member area and computerr,

From the Manual, 4 = 3.61 in? (23.291 cm?); r, = 1.56 in (39 624 mm); r, = 0.99 in
(25.146 mm); r, = (2 x 1.562 - 0.99%)°3=1.97 in (50 038 mm).

4. Determine the minimum radius of gyration of the built-up
section; compute the strut capacity

Thus, 7 = r, = 1.97 in (50.038 mm); KL/r = 12(12)/1.97 = 73. From the Manual, f=16.12
kips/in? (766.361 MPa). Then P = Af = 2(3.61)(16.12) = 116 kips (515.97 kN).

SECTION SELECTION FOR A COLUMN
WITH TWO EFFECTIVE LENGTHS

A 30-ft (9.2-m) long column is to carry a 200-kip (889.6-kN) load. The column will be
braced about both principal axes at top and bottom and braced about its minor axis at mid-
height. Architectural details restrict the member to a nominal depth of 8 in (203.2 mm).
Select a section of A242 steel by consulting the allowable-load tables in the AISC Manu-
al and then verify the design.

Calculation Procedure:

1. Select a column section
Refer to Fig. 13. The effective length with respect to the minor axis may be taken as 15 ft
(4.6 m). Then K,L = 30 ft (9.2 m) and K,L = 15 ft (4.6 m).

The allowable column loads recorded in the Manual tables are calculated on the prem-
ise that the column tends to buckle about the minor axis. In the present instance, however,
this premise is not necessarily valid. It is expedient for design purposes to conceive of a
uniform-strength column, i.e., one for which K, and K, bear the same ratio as 7, and r,
thereby endowing the column with an 1dentlca1 slenderness ratio with respecf to the two
principal axes.

Select a column section on the basis of the K,L value; record the value of r./r, of this
section. Using linear interpolation in the Manual Table shows that a W8 x 40 column has
a capacity of 200 kips (889.6 kN) when K,L = 15.3 ft (4.66 m); at the bottom of the table
it is found that r,/r, = 1.73.
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2. Compute the value of K, L
associated with a uniform- L Maijor (x) Minor (y)
strength column, and compare axis axis

this with the actual value 30
Thus, KL = 1.73(15.3) = 26.5 ft (8.1 m) < 9.1 m) r

30 £t (9.2 m). The section is therefore inade- ] 15
quate.

3. Try a specific column section
of larger size FIGURE 13
Trying W8 x 48, the capacity = 200 kips

(889.6 kN) when K,L 17.7 ft (5.39 m). For

uniform strength, KL = 1.74(17.7) = 30.8 >

30 £t (9.39 m > 9.2 m). The W8 x 48 there-

fore appears to be satisfactory.

4. Verify the design

To verify the design, record the properties of this section and compute the slenderness ra-
tios. For this grade of steel and thickness of member, the yield-point stress is 50 kips/in?
(344.8 MPa), as given in the Manual. Thus, 4 = 14.11 in? (91038 cm?); r, = 3.61 in
(91.694 mm); r, = 2.08 in (52.832 mm). Then K.L/r, = 30(12)/3.61 = 100; K,L/r, =
15(12)/2.08 = 87.

5. Determine the allowable stress and member capacity

From the Manual, f= 14.71 kips/in? (101.425 MPa) with a slenderness ratio of 100. Then
P =14.11(14.71) = 208 kips (925.2 kN). Therefore, use W8 x 48 because the capacity of
the column exceeds the intended load.

(4.6m)
|

STRESS IN COLUMN WITH PARTIAL
RESTRAINT AGAINST ROTATION

The beams shown in Fig. 144 are rigidly connected to a W14 x 95 column of 28-ft (8.5-
m) height that is pinned at its foundation. The column is held at its upper end by cross
bracing lying in a plane normal to the web. Compute the allowable axial stress in the col-
umn in the absence of bending stress.

~N

f—

Y:\g:n)\(ngs Minor axis Major axis
waexs | \ | waixes o8

40’ iong r I 30" long {8.5m)

(12.2m) (9.1 m)

(g) Framing plan ot top

(b) Restraint conditions

FIGURE 14
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Calculation Procedure:

1. Draw schematic diagrams to indicate the restraint conditions
Show these conditions in Fig. 14b. The cross bracing prevents sidesway at the top solely
with respect to the minor axis, and the rigid beam-to-column connections afford partial
fixity with respect to the major axis.

2. Record the I, values of the column and beams

I
Section in* cm?
W14 x 95 1064 44,287
W24 x 76 2096 87,242
W21 x 68 1478 61,519

3. Calculate the rigidity of the column relative to that
of the restraining members at top and bottom
Thus, //L, = 1064/28 = 38. At the top, Z(I,/L,) = 2096/40 + 1478/30 = 101.7. At the top,
the rigidity G, =38/101.7=0.37.

In accordance with the instructions in the Manual, set the rigidity at the bottom G, =
10.
4. Determine the value of K,
Using the Manual alignment chart, determine that K, = 1.77.
5. Compute the slenderness ratio with respect to both principal
axes, and find the allowable stress
Thus, K.Lir, = 1.77(28)(12)/6.17 = 96.4; K, L/r, = 28(12)/3.71 = 90.6.

Using the larger value of the slenderness ratio, find from the Manual the allowable ax-
ial stress in the absence of bending = /= 13.43 kips/in? (92.600 MPa).

LACING OF BUILT-UP COLUMIN

Design the lacing bars and end tie plates of the member in Fig. 15. The lacing bars will be
connected to the channel flanges with Y2-in (12.7-mm) rivets.

Calculation Procedure:

1. Establish the dimensions of the lacing system to conform
to the AISC Specification
The function of the lacing bars and tie plates is to preserve the integrity of the column and
to prevent local failure.
Refer to Fig. 15. The standard gage in 15-in (381.0-mm) channel = 2 in (50.8 mm),
from the AISC Manual. Then h = 14 < 15 in (381.0 mm); therefore, use single lacing.
Try 6 =60°; then, v = 2(14) cot 60° = 16.16 in (410.5 mm). Set v = 16 in (406.4 mm);
therefore, d = 16.1 in (408.94 mm). For the built-up section, KL/r = 48.5; for the single
channel, KL/r = 16/0.89 < 48.5. This is acceptable. The spacing of the bars is therefore
satisfactory.
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2. Design the lacing bars

The lacing system must be capable of o

transmitting an assumed transverse shear s,

equal to 2 percent of the axial load; this

shear is carried by two bars, one on each

side. A lacing bar is classified as a sec- | I

ondary member. To compute the trans- |

verse shear, assume that the column will v

be loaded to its capacity of 432 kips | Bar 1'% x %e.

(1921.5N). [ 1] Garxititmm)
Then force per bar = %4(0.02)(432) | I

x (16.1/14) = 5.0 kips (22.24 N). Also, L/r I Il

= 140; therefore, r = 16.1/140 = 0.115 in ot " "‘

(2.9210 mm). (3556 mm) s
For a rectangular section of thickness Il ll4

t, =10.289¢. Then ¢ = 0.115/0.289 = 0.40 [

in (10.160 mm). Set ¢+ = 76 in (11.11 (50.8 mml2 0"

mm); r = 0.127 in (3.226 mm); L/r = —

16.1/0.127 = 127; f = 9.59 kips/in® e

(66. 123 MPa); 4 = 5.0/9.59 = 0.52 in?

(3.355 cm?). From the Manual, the mini- FIGURE 15. Lacing and tie plates.

mum width required for %-in (12.7 mm)

rivets = 1% in (38.1 mm). Therefore, use a

flat bar 1% x 716 in (38.1 x 11.11 mm),

A=0.66in? (4.258 cm?).

3. Design the end tie plates in accordance with the Specification

The minimum length = 14 in (355.6 mm); # = 14/50 = 0.28. Therefore, use plates 14 x %16

in (355.6 x 7.94 mm). The rivet pitch is limited to six diameters, or 3 in (76.2 mm).

B
’.

L)
b [=Plate 14 x %e
y (355.6x 794 mm)
2

{254 mm)
2'/(50.8 mm)

SELECTION OF A COLUMN WITH A LOAD
AT AN INTERMEDIATE LEVEL

A column of 30-ft (9.2-m) length carries a load of 130 kips (578.2 kN) applied at the top
and a load of 56 kips (249.1 kN) applied to the web at midheight. Select an 8-in (203.2-
mm) column of A242 steel, using K,L = 30 ft (9.2 m) and K, L = 15 ft (4.6 m).

Calculation Procedure:

1. Compute the effective length of the column with respect

to the major axis

The following procedure affords a rational method of designing a column subjected to a
load applied at the top and another load applied approximately at the center. Let m = load
at intermediate level, kips per total load, kips (kilonewtons). Replace the factor K with a
factor K’ defined by K’ = K(1 — m/2)*. Thus, for this column, m = 56/186 = 0.30. And
K'.L=30(1-0.15) %5 =276 ft (8.41 m).

2. Select a trial section on the basis of the K L value

From the AISC Manual for a W8 x 40, capacity = 186 kips (827.3 kN) when K, =16.2 ft
(4.94 m) and r,/r, = 1.73.
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3. Determine whether the selected section is acceptable

Compute the value of KL associated with a uniform-strength column, and compare this
with the actual effective length. Thus, K,.L = 1.73(16.2) = 28.0 > 27.6 ft (8.41 m). There-
fore, the W8 x 40 is acceptable.

DESIGN OF AN AXIAL MEMBER
FOR FATIGUE

A web member in a welded truss will sustain precipitous fluctuations of stress caused by
moving loads. The structure will carry three load systems having the following character-
istics:

Force induced in member, kips (kN)

No. of times
System Maximum compression Maximum tension applied
A 46 (204.6) 18 (80.1) 60,000
B 40(177.9) 9 (40.0) 1,000,000
C 32(142.3) 8 (35.6) 2,500,000

The effective length of the member is 11 ft (3.4 m). Design a double-angle member.

Calculation Procedure:

1. Calculate for each system the design load, and indicate the
yield-point stress on which the allowable stress is based

The design of members subjected to a repeated variation of stress is regulated by the
AISC Specification. For each system, calculate the design load and indicate the yield-
point stress on which the allowable stress is based. Where the allowable stress is less than
that normally permitted, increase the design load proportionately to compensate for this
reduction. Let + denote tension and — denote compression. Then

Systemn Design load, kips (kN) Yield-point stress, kips/in? (MPa)
A —46 — %3(18) =58 (-257.9) 36 (248.2)
B —40 - %(9) = —46 (-204.6) 33(227.5)
C 1.5(=32 — % x 8) = -57 (-253.5) 33 (227.5)

2. Select a member for system A and determine if it is adequate
for system C

From the AISC Manual, try two angles 4 x 3% x % in (101.6 x 88.90 x 9.53 mm), with
long legs back to back; the capacity is 65 kips (289.1 kN). Then 4 = 5.34 in® (34.453
cm?); r = r, = 1.25 in (31.750 mm); KL/r = 11(12)/1.25 = 105.6.

From the Manual, for a yield-point stress of 33 kips/in® (227.5 MPa), f = 11.76
kips/in? (81.085 MPa). Then the capacity P = 5.34(11.76) = 62.8 kips (279.3 kN) > 57
kips (253.5 kN). This is acceptable. Therefore, use two angles 4 x 3% X % in (101.6 X
88.90 x 9.53 mm), long legs back to back.
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INVESTIGATION OF A BEAM COLUMIN

A W12 x 53 column with an effective length of 20 ft (6.1 m) is to carry an axial load of
160 kips (711.7 kN) and the end moments indicated in Fig. 16. The member will be se-
cured against sidesway in both directions. Is the section adequate?

Calculation Procedure: 180 kips (711.7 kN)

')3L5 ftekips

1. Record the properties of the section A Has7kNem)

The simultaneous set of values of axial stress and
bending stress must satisfy the inequalities set forth /
in the AISC Specification. |
The properties of the section are 4 = 15.59 in? '
(100.586 cm?); S, = 70.7 in® (1158.77 cm3); r, = 5.23 []
in (132.842 mm); 7, = 2.48 in (62.992 mm). Also, 20 ‘
from the Manual, L. = 10.8 ft (3.29 m); L, =21.7 ft \
(6.61 m). \

2. Determine the stresses listed below \
The stresses that must be determined are the axial \
stress f,; the bending stress f,; the axial stress F,, ———J ),52 flekips
which would be permitted in the absence of bending; (206 kNem)
and the bending stress F,, which would be permitted
in the absence of axial load. Thus, f, = 160/15.59 = 160 kips (7IL7 kN)
10.26 kips/il’l2 (70.742 MPa); fb = 3].5(12)/70.7 = FIGURE 16. Beam column.
5.35 kips/in? (36.888 MPa); KL/r = 240/2.48 = 96.8;

therefore, F, = 13.38 kips/in? (92.255 MPa); L, < KL

< L; therefore, F, = 22 kips/in® (151.7 MPa). (Al-

though this consideration is irrelevant in the present instance, note that the Specification
establishes two maximum d/t ratios for a compact section. One applies to a beam, the oth-
er to a beam column.)

3. Calculate the moment coefficient C,,
Since the algebraic sign of the bending moment remains unchanged, M,/M, is positive.
Thus, C,, = 0.6 + 0.4(15.2/31.5) = 0.793.

4. Apply the appropriate criteria to test the adequacy

of the section

Thus, f,/F, = 10.26/13.38 = 0.767 > 0.15. The following requirements therefore apply:
JalFy + [C(1 = LIFDW/Fy) = 15 £,(0.6f,) + fo/F = 1 where F, = 149,000/(KL/r)?
kips/in? and KL and 7 are evaluated with respect to the plane of bending.

Evaluating gives F, = 149,000(5.23)?/240% = 70.76 kips/in? (487.890 MPa); f,/F, =
10.26/70.76 = 0145. Substituting in the first requirements equation yields 0.767 +
(0.793/0.855)(5.35/22) = 0.993. This is acceptable. Substituting in the second require-
ments equation, we find 10.26/22 + 5.35/22 = 0.709. This section is therefore satisfactory.

APPLICATION OF BEAM-COLUMN FACTORS

For the previous calculation procedure, investigate the adequacy of the W12 x 53 section
by applying the values of the beam-column factors B and a given in the AISC Manual.
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Calculation Procedure:

1. Record the basic values of the previous calculation procedure
The beam-column factors were devised in an effort to reduce the labor entailed in analyz-
ing a given member as a beam column when f,/F, > 0.15. They are defined by B = A/S per
inch (decimeter); a = 0.149 x 1067 in* (6201.97 dm*).

Let P denote the applied axial load and P,,,, the axial load that would be permitted in
the absence of bending. The equations given in the previous procedure may be trans-
formed to P + BMC,(F,/Fy)a/la — P(KLY*] = Pyow, and PF,/(0.6f,) + BMF,/Fy < Py,
where KL, B, and a are evaluated with respect to the plane of bending.

The basic values of the previous procedure are P = 160 kips (711.7 kN); M = 31.5
ft-kips (42.71 kN-m); F, = 22 kips/in? (151.7 MPa); C,, = 0.793.

2. Obtain the properties of the section

From the Manual fora W12 x 53, 4 =15.59 in? (100.587 cm?); B, = 0.221 per inch (8.70
per meter); a, = 63.5 x 10¢ in* (264.31 x 10°> dm*). Then when KL = 20 ft (6.1 m), P00 =
209 kips (929.6 kN).

3. Substitute in the first transformed equation

Thus, F, = P,ou/A = 209/15.59 = 13.41 kips/in? (92.461 MPa), P(KL)* = 160(240)> =
9.22 x 106 kip-in? (2.648 x 10* kN-m?), and a,/[a, — P(KL)*] = 63.5/(63.5 - 9.22) = 1.17,
then 160 + 0.221(31.5)(12)(0.793)(13.41/22)(1.17) = 207 < 209 kips (929.6 kN). This is
acceptable.

4. Substitute in the second transformed equation

Thus, 160(13.41/22) + 0.221(31.5)(12)(13.41/22) = 148 < 209 kips (929.6 kN). This is
acceptable. The W12 x 53 section is therefore satisfactory.

NET SECTION OF A TENSION MEMBER

The 7 x Y in (177.8 x 6.35 mm) plate in Fig. 17 carries a tensile force of 18,000 1b
(80,064.0 N) and is connected to its support with three %-in (19.05-mm) rivets in the
manner shown. Compute the maximum tensile stress in the member.

Calculation Procedure:

1. Compute the net width
of the member at each section

(632‘3257’” A of potential rupture
NG L The AISC Specification prescribes the man-
9 ner of calculating the net section of a tension
D member. The effective diameter of the holes
N is considered to be % in (3.18 mm) greater

NP < than that of the rivets.

” After computing the net width of each
2%" ¢ E G section, select the minimum value as the ef-
(63.5mm) | | fective width. The Specification imposes an
(31.75mm){I%} 3" (76.2 mm) upper limit of 85 percent of the gross width.

Refer to Fig. 17. From B to D, s = 1.25 in
FIGURE 17 (31.750 mm), g = 2.5 in (63.50 mm); from D
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to F, s =3in (76.2 mm), g = 2.5 in (63.50 mm); w,= 7 — 0.875 = 6.12 in (155.45 mm);
Waspe = 7 — 2(0.875) + 1.25%/[4(2.5)] = 5.41 in (137.414 mm); w,pppg = 7 — 3(0.875) +
1.25%/(4 x 2.5) + 3%/(4 x 25) = 5.43 in (137.922 mm); wmax = 0.85(7) = 5.95 in (151.13
mm). Selecting the lowest value gives w 4= 5.41 in (137.414 mm).

2. Compute the tensile stress on the effective net section

Thus, f= 18,000/[5.41(0.25)] = 13,300 1b/in? (91,703.5 kPa).

DESIGN OF A DOUBLE-ANGLE
TENSION MEMBER

The bottom chord of a roof truss sustains a tensile force of 141 kps (627.2 kN). The mem-
ber will be spliced with %-in (19.05-mm) rivets as shown in Fig. 184. Design a double-
angle member and specify the minimum rivet pitch.

j—Splice plate
T T

O dilb
b +~ Bottom-chord angle
< < C
) /1 E
\— =\ f\ -~/ M \0 fL\

P N
C f— —
4 Vo (> \N

Splice piate
{0) Method of splicing
[
2%
(63.5mm)}
“ W,
2% o
' (57.15 mm) 45/'6n
2% | 2V (109.54 mm)
{63.5 mm) (52.39 mm)
Cut outstanding leg —{ §

and place it here

(b) Development of angle for net section

FIGURE 18
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Calculation Procedure:

1. Show one angle in its developed form

Cut the outstanding leg, and position it to be coplanar with the other one, as in Fig. 185.
The gross width of the angle w, is the width of the equivalent plate thus formed; it equals
the sum of the legs of the angle less the thickness.

2. Determine the gross width in terms of the thickness

Assume tentatively that 2.5 rivet holes will be deducted to arrive at the net width. Express
W, in terms of the thickness ¢ of each angle. Then net area required = 141/22 = 6.40 in?
(41.292 cm?); also, 2¢(w, — 2.5 x 0.875) = 6.40; w, = 3.20/¢ + 2.19.

3. Assign trial thickness values, and determine the gross width
Construct a tabulation of the computed values. Then select the most economical size of
member. Thus

¢, in wy+ g, in Area, in?
(mm) W,, in (mm) (mm) Available size, in (mm) (cm?) (cm?)
1%(127)  8.59 (218.186)  9.09 (230.886) 6 x 3% x % (152.4 x 88.9 x 12.7)  4.50 (29.034)

76 (11.11)  9.50 (241.300)  9.94(252.476) 6 x4 x V16 (152.4 x 101.6 x 11.11) 4.18 (26.969)
¥%(9.53) 1072 (272.228) 11.10(281.540) None

The most economical member is the one with the least area. Therefore, use two angles 6 x

4 x76in (152.4 x 101.6 x 11.11 mm).

4. Record the standard gages

Refer to the Manual for the standard gages, and record the values shown in Fig. 18b.

5. Establish the rivet pitch

Find the minimum value of s to establish the rivet pitch. Thus, net width required =

15[6.40/(7/16)] = 7.31 in (185.674 mm); gross width = 6 + 4 — 0.44 = 9.56 in (242.824

mm). Then 9.56 — 3(0.875) + s%/(4 x 2.5) + s%/(4 x 4.31) = 7.31; s = 1.55 in (39.370 mm).
For convenience, use the standard pitch of 3 in (76.2 mm). This results in a net width

of 7.29 in (185.166 mm); the deficiency is negligible.

Plastic Design of Steel Structures

Consider that a structure is subjected to a gradually increasing load until it collapses.
When the yield-point stress first appears, the structure is said to be in a state of initial
yielding. The load that exists when failure impends is termed the ultimate load.

In elastic design, a structure has been loaded to capacity when it attains initial yield-
ing, on the theory that plastic deformation would annul the utility of the structure. In plas-
tic design, on the other hand, it is recognized that a structure may be loaded beyond initial
yielding if:

1. The tendency of the fiber at the yield-point stress toward plastic deformation is resis-
ted by the adjacent fibers.

2. Those parts of the structure that remain in the elastic-stress range are capable of sup-
porting this incremental load.
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The ultimate load is reached when these conditions cease to exist and thus the struc-
ture collapses.

Thus, elastic design is concerned with an allowable stress, which equals the yield-
point stress divided by an appropriate factor of safety. In contrast, plastic design is con-
cerned with an allowable load, which equals the ultimate load divided by an appropriate
factor called the load factor. In reality, however, the distinction between elastic and plas-
tic design has become rather blurred because specifications that ostensibly pertain to elas-
tic design make covert concessions to plastic behavior. Several of these are underscored
in the calculation procedures that follow.

In the plastic analysis of flexural members, the following simplifying assumptions are
made:

1. As the applied load is gradually increased, a state is eventually reached at which all
fibers at the section of maximum moment are stressed to the yield-point stress, in ei-
ther tension or compression. The section is then said to be in a state of plastification.

2. While plastification is proceeding at one section, the adjacent sections retain their lin-
ear-stress distribution.

Although the foregoing assumptions are fallacious, they introduce no appreciable
error.

When plastification is achieved at a given section, no additional bending stress may be
induced in any of its fibers, and the section is thus rendered impotent to resist any incre-
mental bending moment. As loading continues, the beam behaves as if it had been con-
structed with a hinge at the given section. Consequently, the beam is said to have devel-
oped a plastic hinge (in contradistinction to a true hinge) at the plastified section.

The yield moment M, of a beam section is the bending moment associated with initial
yielding. The plastic moment M,, is the bending moment associated with plastification.

The plastic modulus Z of a beam section, which is analogous to the section modulus
used in elastic design, is defined by Z = M, /f,, where f, denotes the yield-point stress. The
shape factor SF is the ratio of M, to M,, being so named because its value depends on the
shape of the section. Then SF = M,/M,, = f.Z/(f,S) = Z/S.

In the following calculation procedures, it is understood that the members are made of
A36 steel.

ALLOWABLE LOAD ON BAR SUPPORTED
BY RODS '

A load is applied to a rigid bar that is symmetricaily supported by three steel rods as
shown in Fig. 19. The cross-sectional areas of the rods are: rods 4 and C, 1.2 in® (7.74
cm?); rod B, 1.0 in? (6.45 cm?). Determine the maximum load that may be applied, (a) us-
ing elastic design with an allowable stress of 22,000 Ib/in? (151,690.0 kPa); (b) using
plastic design with a load factor of 1.85.

Calculation Procedure:

1. Express the relationships among the tensile stresses in the rods
The symmetric disposition causes the bar to deflect vertically without rotating, thereby
elongating the three rods by the same amount. As the first method of solving this prob-
lem, assume that the load is gradually increased from zero to its allowable value.
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65’ 6.5’ Expressing the relationships among the
| “om (1L9m) tensile stresses, we have AL = s,L,/E =
spLp/E = scLo/E; therefore, s, = s, and
54 = spLp/L, = 075sp for this arrangement
of rods. Since sz is the maximum stress,
(2.4m) the allowable stress first appears in rod B.

2. Evaluate the stresses at the
, instant the load attains its
\_Rigi 4 bar allowable value
Calculate the load carried by each rod, and
sum these loads to find P,,,,. Thus s =
FIGURE 19 22,000 Ib/in®> (151,690.0 kPa); sp =
0.75(22,000) = 16,500 1b/in® (113,767.5
kPa); P, = P, = 16,500(1.2) = 19,800 Ib
(88,070.4 N); Pz =22,000(1.0) = 22,000 Ib
(97,856.0 N); Pyow = 2(19,800) + 22,000
) = 61,600 1b (273,996.8 N).

Next, consider that the load is gradually increased from zero to its ultimate value.
When rod B attains its yield-point stress, its tendency to deform plastically is inhibited by
rods 4 and C because the rigidity of the bar constrains the three rods to elongate uniform-
ly. The structure therefore remains stable as the load is increased beyond the elastic range
until rods 4 and C also attain their yield-point stress.

3. Find the ultimate load

To find the ultimate load P, equate the stress in each rod to f,, calculate the load carried
by each rod, and sum these loads to find the ultimate load P,. Thus, P, = P = 36,000(1.2)
=43,200 1b (192,153.6 N); P = 36,000(1.0) = 36,000 1b (160,128.0 N); P, = 2(43,200) +
36,000 = 122,400 1b (544,435.2 N).

4. Apply the load factor to establish the allowable load
Thus, P,yow = P,/LF = 122,400/1.85 = 66,200 1b (294,457.6 N).

DETERMINATION OF SECTION
SHAPE FACTORS

Without applying the equations and numerical values of the plastic modulus given in the
AISC Manual, determine the shape factor associated with a rectangle, a circle, and a W16
x 40. Explain why the circle has the highest and the W section the lowest factor of the
three.

Calculation Procedure:

1. Calculate M, for each section

Use the equation M, = §F, for each section. Thus, for a rectangle, M, = bdzfy/6. For a cir-
cle, using the properties of a circle as given in the Manual, we find M, = 7d?f,/32. For a
W16 x 40, 4 = 11.77 in? (75.940 cm?), § = 64.4 in® (1055.52 cm®), and M, = 64.4f,.

2. Compute the resultant forces associated with plastification
In Fig. 20, the resultant forces are C and T. Once these forces are known, their action lines
and M), should be computed.



STRUCTURAL STEEL DESIGN 1.117

Thus, for a rectangle, C = bdf,/2, a = d/2, and fy
M, = aC = bd?,/4. For a circle, C = wd’,/8, a = -
4d(3m), and M, = aC = d*,/6. ForaW16 x 40, C = CA
¥(11.77 in?) = 5.885f,. °
To locate the action lines, refer to the Manual .
and note the position of the centroidal axis of the 7, T
WTS8 x 20 section, i.e., a section half the size of that Stresses Resultant
being considered. Thus, a = 2(8.00 — 1.82) = 12.36 forces
in (313.944 mm); M, = aC = 12.3605.385)) = pGURE 20. Conditions at section

72.7f,.

3. Divide M, by M, to obtain

the shape factor

For a rectangle, SF = (bd%/4)/(bd?/6) = 1.50. For a
circle, SF = (4%/6)/(7d3/32) = 1.70. For a WT16 x
40, SF=72.7/64.4 = 1.13.

4. Explain the relative values of the shape factor
To explain the relative values of the shape factor, express the resisting moment con-
tributed by a given fiber at plastification and at initial yielding, and compare the results.
Let d4 denote the area of the given fiber and y its distance from the neutral axis. At plas-
tification, dM,, = f,ydA. At initial yielding, /= f,y/c; dM, = fyyZdA/c; dM,/dM,, = cly.

By comparing a circle and a hypothetical W section having the same area and depth,
the circle is found to have a larger shape factor because of its relatively low values of y.

As this analysis demonstrates, the process of plastification mitigates the detriment that
accrues from placing any area near the neutral axis, since the stress at plastification is in-
dependent of the position of the fiber. Consequently, a section that is relatively inefficient
with respect to flexure has a relatively high shape factor. The AISC Specification for elas-
tic design implicitly recognizes the value of the shape factor by assigning an allowable
bending stress of 0.75f, to rectangular bearing plates and 0.90f; to pins.

of plastification.

DETERMINATION OF ULTIMATE LOAD
BY THE STATIC METHOD

The W18 x 45 beam in Fig. 21a is simply supported at 4 and fixed at C. Disregarding the
beam weight, calculate the ultimate load that may be applied at B (a) by analyzing the be-
havior of the beam during its two phases; (b) by analyzing the bending moments that exist
at impending collapse. (The first part of the solution illustrates the postelastic behavior of
the member.)

Calculation Procedure:

1. Calculate the ultimate-moment capacity of the member

Part a: As the load is gradually increased from zero to its ultimate value, the beam passes
through two phases. During phase 1, the elastic phase, the member is restrained against
rotation at C. This phase terminates when a plastic hinge forms at that end. During phase
2-the postelastic, or plastic, phase—the member functions as a simply supported beam.
This phase terminates when a plastic hinge forms at B, since the member then becomes
unstable.



1.118 STRUCTURAL STEEL ENGINEERING AND DESIGN

P Using data from the AISC Manual,

we have Z = 89.6 in® (1468.54 cm?).

W18 X 45 B % Then M, = £,Z = 36(89.6)/12 = 268.8

020" b=I0' ft-kips (364.49 kN-m).

(6im) 45" (3.0m) 2. Calculate the moment BD

(9.1 m) Let P, denote the applied load at com-

{0) Force diogrom pletion of phase 1. In Fig. 215, con-

struct the bending-moment diagram

F ADEC corresponding to this load.

Evaluate P; by applying the equations

P for case 14 in the AISC Manual. Cal-

e 2 \ M, culate the moment BD. Thus, CE =
~ X —ab(a + L)P\/(2L?) = -20(10)(50)P,/
[2(900)] = — 268.8; P, = 4838

A 8 ¢ kips (215.194 kN); BD = ab¥a +
\ -M, 2L)P,/(2L%) = 20(100)(80)(48.38)/
[2(27,000)] = 143.3 frkips (194.31
kKN'm).
3. Determine the
incremental load at
FIGURE 21 completion of phase 2
Let P, denote the incremental applied
load at completion of phase 2, i.e., the
actual load on the beam minus P,. In
Fig. 21b, construct the bending-
moment diagram AFEC that exists when phase 2 terminates. Evaluate P, by considering
the beam as simply supported. Thus, BF = 268.8 ft-kips (364.49 kN-m); DF = 268.8 —
143.3 =125.5 fi-kips (170.18 KN'm); but DF = abP,/L = 20(10)P,/30 = 125.5; P,=18.82
kips (83711 kN).
4. Sum the results to obtain the ultimate load
Thus, P, = 48.38 + 18.82 = 67.20 kips (298.906 kN)).

5. Construct the force and bending-moment diagrams

for the ultimate load

FPart b: The following considerations are crucial: The bending-moment diagram always
has vertices at B and C, and formation of two plastic hinges will cause failure of the beam.
Therefore, the plastic moment occurs at B and C at impending failure. The sequence in
which the plastic hinges are formed at these sections is immaterial,

These diagrams are shown in Fig. 22. Express M, in terms of P,, and evaluate P,.
Thus, BF = 20R, = 268.8; therefore, R, = 13.44 kips (59.781 kN). Also, CE = 30R, -
10P, =30 x 13.44 — 10P, = -268.8; P, = 67.20 kips (298.906 kN).

Here is an alternative method: BF = (abP,/L) — aM,/L = M, or 20(10)P,/30 =
50M,/30; P, = 67.20 kips (298.906 kN).

This solution method used in part b is termed the static, or equilibrium, method. As
this solution demonstrates, it is unnecessary to trace the stress history of the member as it
passes through its successive phases, as was done in part a; the analysis can be confined
to the conditions that exist at impending failure. This procedure also illustrates the follow-
ing important characteristics of plastic design:

“d

E
{b) Bending- moment diagram

1. Plastic design is far simpler than elastic design.
2. Plastic design yields results that are much more reliable than those secured through
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Py

Ra a=20 b=10' Ig.
(6.1m) L-30' (3.0 m)
(9.1 m)

{a) Force diagram at
ultimate load

F e
MD
A ~ Bl c
\\ | -M
\\k P
~
~
E

(b) Bending—-moment diagrom
at ultimate lood

FIGURE 22

elastic design. For example, assume that the support at C does not completely in-
hibit rotation at that end. This departure from design conditions will invalidate the
elastic analysis but will in no way affect the plastic analysis.

DETERMINING THE ULTIMATE LOAD
BY THE MECHANISM METHOD

Use the mechanism method to solve the problem given in the previous calculation proce-
dure.

Calculation Procedure:

1. Indicate, in hyperbolic manner, the virtual displacement
of the member from its initial to a subsequent position
To the two phases of beam behavior previously considered, it is possible to add a third.
Consider that when the ultimate load is reached, the member is subjected to an incremen-
tal deflection. This will result in collapse, but the behavior of the member can be analyzed
during an infinitesimally small deflection from its stable position. This is termed a virtual
deflection, or displacement.

Since the member is incapable of supporting any load beyond that existing at comple-
tion of phase 2, this virtual deflection is not characterized by any change in bending
stress. Rotation therefore occurs solely at the real and plastic hinges. Thus, during phase
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3, the member behaves as a mechanism (i.e., a constrained chain of pin-connected rigid
bodies, or links).

In Fig. 23, indicate, in hyperbolic manner, the virtual displacement of the member
from its initial position ABC to a subsequent position AB’C. Use dots to represent plastic
hinges. (The initial position may be represented by a straight line for simplicity because
the analysis is concerned solely with the deformation that occurs during phase 3.)

2. Express the linear
displacement under the load

P, and the angular displacement
o 8 at every plastic hinge
a__Y» wewras B Y ¢ Use a convenient unit to express these dis-
z;t—— (W18 X 45) placements. Thus, A = a6, = b6; therefore,
. 05 0C=a0A/b=20A; 0B=0A+0C=30A
, B , 3. Evaluate the external and
Q- (28 = b(;'g = internal work associated with

the virtual displacement

FIGURE 23 The work performed by a constant force
equals the product of the force and its dis-
placement parallel to its action line. Also,
the work performed by a constant moment

equals the product of the moment and its angular displacement. Work is a positive quanti-

ty when the displacement occurs in the direction of the force or moment. Thus, the exter-

nal work Wy =P,A = P,a6,=20P,0,. And the internal work W;=M,(65 + 6c) = 5M,6,.

4. Equate the external and internal work to evaluate

the ultimate load

Thus, 20P,0, = 5M,6,; P, = (5/20)(268.8) = 67.20 kips (298.906 kN).

The solution method used here is also termed the virtual-work, or kinematic, method.

ANALYSIS OF A FIXED-END BEAM UNDER
CONCENTRATED LOAD

If the beam in the two previous calculation procedures is fixed at A as well as at C, what is
the ultimate load that may be applied at B?

Calculation Procedure:

1. Determine when failure impends

When hinges form at 4, B, and C, failure impends. Repeat steps 3 and 4 of the previous
calculation procedure, modifying the calculations to reflect the revised conditions. Thus
Wg = 20P,04; W;=Mp(0, + 05 + 0c) = 6M,0,; 20P,0, = 6M,0,; P, = (6/20)(268.8) =
80.64 kips (358.687 kN).

2. Analyze the phases through which the member passes

This member passes through three phases until the ultimate load is reached. Initially, it
behaves as a beam fixed at both ends, then as a beam fixed at the left end only, and final-
ly as a simply supported beam. However, as already discussed, these considerations are
extraneous in plastic design.
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ANALYSIS OF A TWO-SPAN BEAM
WITH CONCENTRATED LOADS

The continuous W18 x 45 beam in Fig. 24 carries two equal concentrated loads having
the locations indicated. Disregarding the weight of the beam, compute the ultimate value
of these loads, using both the static and the mechanism method.

Calculation Procedure: a P 2’
8WF45
@3m BTm | (Wiaea5)
1. Construct the force and A S = 3 =
bending-moment diagrams 30 16
The continuous beam becomes unsta- ©1 m (760 m)

ble when a plastic hinge forms at C and

at another section. The bending-mo-  FIGURE 24

ment diagram has vertices at B and D,

but it is not readily apparent at which of these sections the second hinge will form. The
answer is found by assuming a plastic hinge at B and at D, in turn, computing the corre-
sponding value of P,, and selecting the lesser value as the correct result. Part a will use
the static method; part b, the mechanism method.

Assume, for part a, a plastic hinge at B and C. In Fig. 25, construct the force diagram and
bending-moment diagram for span AC. The moment diagram may be drawn in the manner
shown in Fig. 25b or ¢, whichever is preferred. In Fig. 25¢, ACH represents the moments
that would exist in the absence of restraint at C, and ACJ represents, in absolute value, the
moments induced by this restraint. Compute the load P, associated with the assumed hinge
location. From previous calculation procedures, M, = 268.8 ft-kips (364.49 kN-m); then M
=14 x16P,/30 - 14M,/30 = M,; P, = 44(268.8)/224 = 52.8 kips (234.85 kN).

2. Assume another hinge location and compute the ultimate load
associated with this location

Now assume a plastic hinge at C and D. In Fig. 25, construct the force diagram and bend-
ing-moment diagram for CE. Computing the load P, associated with this assumed location,
we find Mp = 12 X 24P,/36 — 24M,/36 = M,,; P, = 60(268.8)/288 = 56.0 kips (249.09 kN).

P, " Py
A B8 C )M, M, / J M’C C D E
14 16’ M 2’ 24
(43m) 30 (4.9m) K (3.7m) 36I(7A3m)
T em ‘ A B ¢ (10.om
(@) Force diagrom (c) Moment diagrom by parts (d) Force diagram
F _ M

O

A B C N D E
-M, -M,
a—r

L
(b) Moment diagrom (e) Moment diagram

FIGURE 25
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3. Solect the lesser value of the ultimate load
The correct result is the lesser of these alternative values, or P, = 52.8 kips (234.85 kN).
At this load, plastic hinges exist at B and C but not at D.

4. For the mechanism method, assume a plastic-hinge location
It will be assumed that plastic hinges are located at B and C (Fig. 26). Evaluate P,. Thus,
0c=146,/16; 05 = 300,/16; A = 140,; Wy =

A yA P, ac'/ c PA=14P,04; Wy = M0+ 0c) = 2.75M,0,;
—  14P,0, = 2.15M,8,; P, = 52.8 kips (234.85
g 5
B % 5. Assume a plastic hinge
“ 6 at another location
@.3m (a9m Select C and D for the new location. Repeat
’ ' the above procedure. The result will be identi-
FIGURE 26 cal with that in step 2.
SELECTION OF SIZES FOR

A CONTINUOUS BEAM

Using a load factor of 1.70, design the member to carry the working loads (with beam
weight included) shown in Fig. 27a. The maximum length that can be transported is 60 ft
(18.3 m).

Calculation Procedure:

1. Determine the ultimate loads to be supported
Since the member must be spliced, it will be economical to adopt the following design:

a. Use the particular beam size required for each portion, considering that the two por-
tions will fail simultaneously at ultimate load. Therefore, three plastic hinges will exist
at failure—one at the interior support and one in the interior of each span.

b. Extend one beam beyond the interior support, splicing the member at the point of con-
traflexure in the adjacent span. Since the maximum simple-span moment is greater for
AB than for BC, it is logical to assume that for economy the left beam rather than the
right one should overhang the support.

Multiply the working loads by the load factor to obtain the ultimate loads to be sup-
ported. Thus, w = 1.2 kips/lin ft (17.51 kN/m); w, = 1.70(1.2) = 2.04 kips/lin ft (29.77
kN/mY); P = 10 kips (44.5 kN); P, = 1.70(10) = 17 kips (75.6 kN).

2. Construct the ultimate-load and corresponding
bending-moment diagram for each span

Set the maximum positive moment My, in span AB and the negative moment at B equal to
each other in absolute value.

3. Evaluate the maximum positive moment in the left span
Thus, R, = 45.9 — Mp/40; x = R ,/2.04; My, = Y4R ;x = R3/4.08 = M. Substitute the value of
R, and solve. Thus, M, = 342 ft-kips (463.8 kN'm).

" An indirect but less cumbersome method consists of assigning a series of trial values
to M and calculating the corresponding value of M, continuing the process until the re-
quired equality is obtained.

4. Select a section to resist the plastic moment

Thus, Z= M, /f, =342(12)136 = 114 in® (1868.5 cm?). Referring to the AISC Manual, use
a W21 x 55 with Z=125.4 in® (2055.31 cm?).
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5. Evaluate the maximum positive moment in the right span

Equate Mj to the true plastic-moment capacity of the W21 x 55. Evaluate the maximum
positive moment My in span BC, and locate the point of contraflexure. Therefore,
Mp=-36(125.4)/12 = -376.2 ft-kips (—510.13 kN-m); My = 169.1 ft-kips (229.30 kN-m);
BF=10.2ft (3.11 m).

6. Select a section to resist the plastic moment

The moment to be resisted is Mz. Thus, Z = 169.1(12)/36 = 56.4 in(924.40 cm?). Use
W16 x 36 with Z = 63.9 in? (1047.32 cm?).

The design is summarized in Fig. 27f. By inserting a hinge at F, the continuity of the
member is destroyed and its behavior is thereby modified under gradually increasing
load. However, the ultimate-load conditions, which constitute the only valid design crite-
ria, are not affected.
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7. Alternatively, design the member with the right-hand beam
overhanging the support

Compare the two designs for economy. The latter design is summarized in Fig. 27g. The
total beam weight associated with each scheme is as shown in the following table.

Design 1 Design 2

55(50.2) =2,761 1b (12,280.9 N) 62(35.4)=2,1951b (9,763.4 N)
36(25.8)= 9291b(4,132.2N) 45(40.6) = 1,827 1b (8,126.5 N)

Total 3,6901b (16,413.1 N) 4,022 1b (17,889.9 N)

For completeness, the column sizes associated with the two schemes should also be
compared.

MECHANISM-METHOD ANALYSIS OF
A RECTANGULAR PORTAL FRAME

Calculate the plastic moment and the reactions at the supports at ultimate load of the
prismatic frame in Fig. 28a4. Use a load factor of 1.85, and apply the mechanism
method.

Calculation Procedure:

1. Compute the ultimate loads to be resisted
There are three potential modes of failure to consider:

a. Failure of the beam BD through the formation of plastic hinges at B, C, and D (Fig.
28b)

b. Failure by sidesway through the formation of plastic hinges at B and D (Fig. 28¢)

¢. A composite of the foregoing modes of failure, characterized by the formation of plas-
tic hinges at Cand D

Since the true mode of failure is not readily discernible, it is necessary to analyze
each of the foregoing. The true mode of failure is the one that yields the highest value
of M,

A;ljthough the work quantities are positive, it is advantageous to supply each angular
displacement with an algebraic sign. A rotation is considered positive if the angle on the
interior side of the frame increases. The algebraic sum of the angular displacements must
equal zero.

Computing the ultimate loads to be resisted yields P, = 1.85(40) = 74 kips (329.2 kN);
Q. = 1.85(12) = 22.2 kips (98.75 kN).

2. Assume the mode of failure in Fig. 28b and compute M,

Thus, A, = 108; Wy = 74(106) = 7400. Then indicate in a tabulation, such as that
shown here, where the plastic moment occurs. Include all significant sections for com-
pleteness.
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FIGURE 28
Angular

Section displacement Moment Wy
A
B -0 M, M,0
C +20 M, 2M,0
D -6 M, M,0
E A
Total 4M,6

Then 4M,,6 = 7406; M, = 185 ft-kips (250.9 kN-m).

3. Repeat the foregoing procedure for failure by sidesway

Thus, A, =246; W =22.2(246) = 532.86.

(d) Composite mechanism

1.125
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Angular
Section displacement Moment W,
A -0
B +6 M, M0
C
D -6 A M,0
E +6
Total 2M,0

Then 2M,0 = 532.86; M,, = 266.4 ftkips (361.24 kN'm).
4. Assume the composite mode of failure and compute M,
Since this results from superposition of the two preceding modes, the angular displace-

ments and the external work may be obtained by adding the algebraic values previously
found. Thus, Wy = 7400+ 532.860 1272.86. Then the tabulation is as shown:

Angular
Section displacement Moment W,
A -0
B
C +26 M, 2M,6
D -26 M, 2M,0
E +6
Total 4M,0

Then 4M,,0 = 1272.86; M, = 318.2 ft-kips (431.48 kN'm).

5. Select the highest value of M, as the correct result
Thus, M, = 318.2 ft-kips (431.48 kN-m). The structure fails through the formation of plas-

74 kips (329.2 kN)

22.2 kips 10
(98.7kN) |[g (3Om) 1o D
2 ]
(7.3 m)
Y Lt e
A ' 2
20
(6.1 m)
A Ve
FIGURE 29

tic hinges at C and D. That a hinge should ap-
pear at D rather than at B is plausible when it
is considered that the bending moments in-
duced by the two loads are of like sign at D
but of opposite sign at B.

6. Compute the reactions

at the supports

Draw a free-body diagram of the frame at ul-
timate load (Fig. 29). Compute the reactions
at the supports by applying the computed val-
ues of M- and Mp. Thus, SM; = 20V, +
22.2(24) — 7410) = 0; ¥V, = 10.36 kips
(46.081 kN); ¥ = 74 — 10.36 = 63.64 kips
(283.071 kN); M= 10V, + 24H, = 103.6 +
24H, = 318.2; H, = 8.94 kips (39.765 kN);
Hy =222 - 894 = 13.26 kips (58.980 kN);
My = -24H; = -24(13.26) = -318.2 ftkips
(—431.48 kN-m). Thus, the results are veri-
fied.
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ANALYSIS OF A RECTANGULAR PORTAL
FRAME BY THE STATIC METHOD

Compute the plastic moment of the frame in Fig. 28a by using the static method.

Calculation Procedure:

1. Determine the relative values of the bending moments

Consider a bending moment as positive if the fibers on the interior side of the neutral
plane are in tension. Consequently, as the mechanisms in Fig. 28 reveal, the algebraic
sign of the plastic moment at a given section agrees with that of its angular displacement
during collapse.

Determine the relative values of the bending moments at B, C, and D. Refer to Fig. 29.
As previously found by statics, ¥V, = 10.36 kips (46.081 kN), M = 24H;, M- =24H, +
10V ; therefore, M= My + 103.6, Eq. a. Also, M, =24H,+ 20V, - 74(10); Mp = My —
532.8,Eq. b; or Mp=M-- 6364, Eq. c.

2. Assume the mode the failure in Fig. 28b
This requires that My = My, = —M,,. This relationship is incompatible with Eq. b, and the
assumed mode of failure is therefore incorrect.

3. Assume the mode of failure in Fig. 28c
This requires that Mg = M,,, and M < M,; therefore, M < Mj. This relationship is incom-
patible with Eq. a, and the assumed mode of failure is therefore incorrect.

By a process of elimination, it has been ascertained that the frame will fail in the man-
ner shown in Fig. 284.

4. Compute the value of M,, for the composite mode of failure
Thus, M- = M,,, and M, = — M,,. Substitute these values in Eq. c. Or, -M, = M,, — 636.4;
M, =318.2 ftkips (431.48 kN'm).

THEOREM OF COMPOSITE MECHANISMS

By analyzing the calculations in the calculation procedure before the last one, establish a
criterion to determine when a composite mechanism is significant (i.e., under what condi-
tions it may yield an M,, value greater than that associated with the basic mechanisms).

Calculation Procedure:

1. Express the external and internal work associated with a given
mechanism

Thus, Wi = ef, and W, = iM,0, where the coefficients e and i are obtained by applying the
mechanism method. Then M, = e/i.

2. Determine the significance of mechanism sign
Let the subscripts 1 and 2 refer to the basic mechanisms and the subscript 3 to their com-
posite mechanism. Then M,,; = e\/i;; M, = e,/i,.

When the basic mechanisms are superposed, the values of Wy are additive. If the two
mechanisms do not produce rotations of opposite sign at any section, the values of W, are
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also additive, and M,; = es/i3 = (e, + €,)/(i; + i). This value is intermediate between M,
and M,,, and the composite mechanism therefore lacks significance. But if the basic
mechanisms produce rotations of opposite sign at any section whatsoever, M,; may ex-
ceed both M,,, and M,,,.

In summary, a composite mechanism is significant only if the two basic mechanisms
of which it is composed produce rotations of opposite sign at any section. This theorem,
which establishes a necessary but not sufficient condition, simplifies the analysis of a
complex frame by enabling the engineer to discard the nonsignificant composite mecha-
nisms at the outset.

ANALYSIS OF AN UNSYMMETRIC
RECTANGULAR PORTAL FRAME

The frame in Fig. 30z sustains the ultimate loads shown. Compute the plastic moment and
ultimate-load reactions.

Calculation Procedure:

1. Determine the solution method to use
Apply the mechanism method. In Fig. 30b, indicate the basic mechanisms.

2. Identify the significant composite mechanisms
Apply the theorem of the previous calculation procedure. Using this theorem, identify the
significant composite mechanisms. For mechanisms 1 and 2, the rotations at B are of op-
posite sign; their composite therefore warrants investigation.

For mechanisms 1 and 3, there are no rotations of opposite sign; their composite there-
fore fails the test. For mechanisms 2 and 3, the rotations at B are of opposite sign; their
composite therefore warrants investigation.

3. Evaluate the external work associated with each mechanism

Mechanism Wg
1 80A, = 80(106) = 8006
2 24, =20(156) = 3000
3 3006
4 11006
5 6006

4. List the sections at which plastic hinges form; record the
angular displacement associated with each mechanism
Use a list such as the following:

Section
Mechanism B C D F
1 -0 +20 -6
2 +0 - -1.26
3 -1.56 .. L. +2.56
4 - +26 -2.256
5 -0.50 - -1.256 +2.50
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5. Evaluate the internal work associated with each mechanism
Equate the external and internal work to find M,. Thus, M,, = 800/4 = 200; M,, =
300/2.25 = 133.3; M,;; = 300/4 = 75; M,,, = 1100/4.25 = 258.8; M5 = 600/4.25 = 141.2.
Equate the external and internal work to find M,,.

6. Select the highest value as the correct result
Thus, M, = 258.8 fi-kips (350.93 kN'm). The frame fails through the formation of plastic
hinges at C and D.

7. Determine the reactions at ultimate load
To verify the foregoing solution, ascertain that the bending moment does not exceed M,
in absolute value anywhere in the frame. Refer to Fig. 30a.

Thus, M, = —20H; =-258.8; therefore, Hy = 12.94 kips (57.557 kN); M= Mp+ 10V
= 258.8; therefore, ¥z = 51.76 kips (230.23 kN); then H, = 7.06 kips (31.403 kN); V, =
28.24 kips (125.612 kN).

Check the moments. Thus SMg = 20V, + 5H, + 20(10) — 80(10) = 0; this is correct.
Also, M= 15H, = 105.9 fvkips (143.60 kN'm) < M, This is correct. Last, Ms = 25H, -
20(10) =-23.5 frkips (-31.87 kN-m)> -M,,. This is correct.

ANALYSIS OF GABLE FRAME
BY STATIC METHOD

The prismatic frame in Fig. 31a carries the ultimate loads shown. Determine the plastic
moment by applying the static method.

Calculation Procedure:

1. Compute the vertical shear V, and the bending moment

at every significant section, assuming H, = 0

Thus, ¥, = 41 kips (182.4 kN). Then M, = 0; M. = 386; M, = 432; My = 276;
M;-=-100.

Note that failure of the frame will result from the formation of two plastic hinges. It is
helpful, therefore, to construct a “projected” bending-moment diagram as an aid in locat-
ing these hinges. The computed bending moments are used in plotting the projected bend-
ing-moment diagram.

2. Construct a projected bending-moment diagram
To construct this diagram, consider the rafter BD to be projected onto the plane of column
AB and the rafter FD to be projected onto the plane of column GF. Juxtapose the two
halves, as shown in Fig. 315. Plot the values calculated in step 1 to obtain the bending-
moment diagram corresponding to the assumed condition of H; = 0.

The bending moments caused solely by a specific value of H, are represented by an
isosceles triangle with its vertex at D’. The true bending moments are obtained by super-
position. It is evident by inspection of the diagram that plastic hinges form at D and F and
that H,, is directed to the right.

3. Evaluate the plastic moment
Apply the true moments at D and F. Thus, M, = M, and M= — M,; therefore, 432 - 37H
=—~-100-25H,), H,= 5.35 kips (23.797 kN) and M,, = 234 ft-kips (317 kKN-m).
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THEOREM OF VIRTUAL DISPLACEMENTS

In Fig. 324, point P is displaced along a virtual (infinitesimally small) circular arc PP’
centered at O and having a central angle §. Derive expressions for the horizontal and ver-
tical displacement of P in terms of the given data. (These expressions are applied later in
analyzing a gable frame by the mechanism method.)

Calculation Procedure:

1. Construct the displacement diagram
In Fig. 32b, let r;, = length of horizontal projection of OP; r, = length of vertical projec-
tion of OP; A, = horizontal displacement of P; A, = vertical displacement of P.

In Fig. 32¢, construct the displacement diagram. Since PP’ is infinitesimally small, re-
place this circular arc with the straight line PP” that is tangent to the arc at P and therefore
normal to radius OP. .

2. Evaluate A, and A,, considering only absolute values
Since 8 s infinitesimally small, set PP" = r0; A, = PP" sin & = r@ sin a; A, = PP" cos a =
rfcos . But  sin a = r, and r cos a = r,; therefore, A, =r,8 and A, =r,6.
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These results may be combined and expressed verbally thus: If a point is displaced
along a virtual circular arc, its displacement as projected on the u axis equals the displace-
ment angle times the length of the radius as projected on an axis normal to u.

GABLE-FRAME ANALYSIS BY USING
THE MECHANISM METHOD

For the frame in Fig. 314, assume that plastic hinges form at D and F. Calculate the plas-
tic moment associated with this assumed mode of failure by applying the mechanism
method.

Calculation Procedure:

1. Indicate the frame configuration following a virtual
displacement
During collapse, the frame consists of three rigid bodies: 4BD, DF, and GF. To evaluate
the external and internal work performed during a virtual displacement, it is necessary to
locate the instantaneous center of rotation of each body.

In Fig. 33 indicate by dash lines the configuration of the frame following a virtual dis-

H
8, \
—]
b=37' / ’\‘i ]
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4 @10'(30m)=40'(12.2m)

FIGURE 33. Virtual displacement of frame.
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placement. In Fig. 33, D is displaced to D' and F to F. Draw a straight line through 4 and
D intersecting the prolongation of GF at H.

Since A is the center of rotation of ABD, DD’ is normal to AD and HD, since G is the
center of rotation of GF, FF' is normal to GF and HF. Therefore, H is the instantaneous
center of rotation of DF.

2. Record the pertinent dimensions and rotations

Record the dimensions a, b, and ¢ in Fig. 33, and express 6, and 6; in terms of 6,. Thus,
6,/0, = HD/AD; .. 6, = 0,. Also, 8,/8, = HF/GF = 49/25; .". 6; = 1.966,.

3. Determine the angular displacement, and evaluate the

internal work

Determine the angular displacement (in absolute value) at D and F, and evaluate the inter-
nal work in terms of 01. ThuS, BD = 91 + 02 = 201, 0F= 01 + 03 = 29601 Then W1= Mp (GD
+ 60p) =4.96M,6,.

4. Apply the theorem of virtual displacements to determine the
displacement of each applied load

Determine the displacement of each applied load in the direction of the load. Multiply the
displacement by the load to obtain the external work. Record the results as shown:

Displacement in direction

Load of load External work
Section  kips kN ft m ft-kips kN-m
B 4 17.8 A, =250,=256, 7.60, 1006, 135.66,
C 34 151.2 A,=106,=1086, 3.00; 3400, 461.00,
D 25 111.2 A, =206, 6.16, 5000, 678.06,
E 22 979 A, =106, 3.06, 2200, 298.36,
Total 11606, 1572.96,

5. Equate the external and internal work to find M,
Thus, 4.96M,,6, = 11606,; M, = 234 frkips (317.3 kN'm).

Other modes of failure may be assumed and the corresponding value of M,, computed
in the same manner. The failure mechanism analyzed in this procedure (plastic hinges at
D and F) yields the highest value of M), and is therefore the true mechanism.

REDUCTION IN PLASTIC-MOMENT
CAPACITY CAUSED BY AXIAL FORCE

A W10 x 45 beam-column is subjected to an axial force of 84 kips (373.6 kN) at ultimate
load. (@) Applying the exact method, calculate the plastic moment this section can devel-
op with respect to the major axis. (b) Construct the interaction diagram for this section,
and then calculate the plastic moment by assuming a linear interaction relationship that
approximates the true relationship.

Calculation Procedure:

1. Record the relevant properties of the member
Let P = applied axial force, kips (kN); P, = axial force that would induce plastification if
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acting alone, kips (kN) = 4f}; M, = plastic-moment capacity of the section in combination
with P, ft-kips (kN'm).

A typical stress diagram for a beam-column at plastification is shown in Fig. 34a. To
simplify the calculations, resolve this diagram into the two parts shown at the right. This
procedure is tantamount to assuming that the axial load is resisted by a central core and
the moment by the outer segments of the section, although in reality they are jointly resis-
ted by the integral action of the entire section.

From the AISC Manual, for a W10 x 45: 4 = 13.24 in? (85.424 cm?); d = 10.12 in
(257.048 mm); ¢, = 0.618 in (15.6972 mm); ¢, = 0.350 in (8.890 mm); d,, = 10.12 -
2(0.618) = 8.884 in (225.6536 mm); Z = 55.0 in? (901.45 cm?).

2. Assume that the central core that resists the 84-kip (373.6-kN)
load is encompassed within the web; determine the core depth
Calling the depth of the core g, refer to Fig. 344. Then g = 84/[0.35(36)] = 6.67 < 8.884 in
(225.6536 mm).

3. Compute the plastic modulus of the core, the plastic modulus
of the remaining section, and the value of M,

Using data from the Manual for the plastic modulus of a rectangle, we find Z, = Y%t,g%> =
14(0.35)(6.67)* = 3.9 in® (63.92 cm’); Z, = 55.0 — 3.9 = 51.1 in? (837.53 cm’); M, =
51.1(36)7 12 = 153.3 ft-kips (207.87 kN'm). This constitutes the solution of part a. The
solution of part b is given in steps 4 through 6.

4. Assign a series of values to the parameter g, and compute the
corresponding sets of values of P and M,

Apply the results to plot the interaction diagram in Fig. 35. This comprises the parabolic
curves CB and BA, where the points 4, B, and C correspond to the conditions g=0, g =
d,, and g = d, respectively.
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FIGURE 35. Interaction diagram for axial force and moment.

The interaction diagram is readily analyzed by applying the following relationships:
dPldg = f.t; dM,/dg = —Vif tg; .. dP/dM, = -2/g. This result discloses that the change in
slope along CB is very small, and the curvature of this arc is negligible.

5. Replace the true interaction diagram with a linear one

Draw a vertical line AD = 0.15P,, and then draw the straight line CD (Fig. 35). Establish
the equation of CD. Thus, slope of CD = —0.85P,/M,; P = — 0.85P,M,/M,, or M, =
L.18(1 - P/P)M,,.

The provisions of one section of the AISC Specification are based on the linear inter-
action diagram.

6. Ascertain whether the data are represented by a point on AD

or CD; calculate M, accordingly

Thus, P, = Af, = 13.24(36) = 476.6 kips (2119.92 kN); P/P, = 84/476.6 = 0.176; therefore,
apply the last equation given in step 5. Thus, M, = 55.0(36)/12 = 165 ftkips (223.7
kN-'m); M, = 1.18(1 - 0.176)(165) = 160.4 ft-kips (217.50 kN-m). This result differs from
that in part a by 4.6 percent.

Load and Resistance Factor Method

Abraham J. Rokach, MSCE, Associate Director of Education, American Institute of Steel
Construction, Inc., writing in Theory and Problems of Structural Steel Design, McGraw-
Hill, states “In 1986 a new method of structural steel design was introduced in the United
States with the publication of the Load and Resistance Factor Design Specification for
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FIGURE 35. Interaction diagram for axial force and moment.

The interaction diagram is readily analyzed by applying the following relationships:
dPldg = f.t; dM,/dg = —Vif tg; .. dP/dM, = -2/g. This result discloses that the change in
slope along CB is very small, and the curvature of this arc is negligible.

5. Replace the true interaction diagram with a linear one

Draw a vertical line AD = 0.15P,, and then draw the straight line CD (Fig. 35). Establish
the equation of CD. Thus, slope of CD = —0.85P,/M,; P = — 0.85P,M,/M,, or M, =
L.18(1 - P/P)M,,.

The provisions of one section of the AISC Specification are based on the linear inter-
action diagram.

6. Ascertain whether the data are represented by a point on AD

or CD; calculate M, accordingly

Thus, P, = Af, = 13.24(36) = 476.6 kips (2119.92 kN); P/P, = 84/476.6 = 0.176; therefore,
apply the last equation given in step 5. Thus, M, = 55.0(36)/12 = 165 ftkips (223.7
kN-'m); M, = 1.18(1 - 0.176)(165) = 160.4 ft-kips (217.50 kN-m). This result differs from
that in part a by 4.6 percent.

Load and Resistance Factor Method

Abraham J. Rokach, MSCE, Associate Director of Education, American Institute of Steel
Construction, Inc., writing in Theory and Problems of Structural Steel Design, McGraw-
Hill, states “In 1986 a new method of structural steel design was introduced in the United
States with the publication of the Load and Resistance Factor Design Specification for
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Structural Steel Buildings. Load and resistance factor design, or LRFD, has joined the old
allowable stress design (ASD) method as a recognized means for the design of structural
steel frameworks for buildings.

“Although ASD has enjoyed a long history of successful usage and is familiar to engi-
neers and architects, the author and most experts prefer LRFD because it is a truer repre-
sentation of the actual behavior of structural steel and unlike ASD, it can provide equiva-
lent margins of safety for all structures under all loading conditions. . . . For these reasons
its anticipated that LRFD will replace ASD as the standard method of structural steel de-

sign.”

The following selected procedures in this handbook cover structural steel design for
buildings using the load and resistance factor design (LRFD) method drawn from the ex-
cellent Rokach book listed above. And competent authorities on the LRFD method, listed
below, are cited frequently in the Rokach book, and in this handbook, usually in abbrevi-

ated form:

AISC: American Institute of Steel Construction, Inc., Chicago, IL.

AISC LRFD Specification: Load and Resistance Factor Design Specification for
Structural Steel Buildings, published by AISC.

AISC LRFD Manual: Load and Resistance Factor Design Manual of Steel Construc-
tion, also published by AISC.

Equations in the following calculation procedures in this handbook are numbered as
follows. Those equations appearing in the A1SO LRFD Specification are accompanied by
their AISC numbers in parentheses, thus ( ); other equations are numbered in brackets,
thus [ ].

It is recommended that the designer have copies of both the AISO LRFD Specification
and the AISC Manual on his or her desk when preparing any structural steel design using
the LRFD method. Both are available from the AISC at 1 E Wacker Dr, Suite 3100,
Chicago IL 60601.

Abraham J. Rokach writes, further, in his book cited above, “The ASD method is
characterized by the use of one judgemental factor of safety. A limiting stress (usually F,)
is divided by a factor of safety (FS, determined by the authors of the Specification) to ar-
rive at an allowable stress

Allowable stress = F,/FS

Actual stresses in a steel member are calculated by dividing forces or moments by the
appropriate section property (e.g. area or section modulus). The actual stresses are then
compared with the allowable stresses to ascertain that

Actual stress = allowable stress

No distinction is made among the various kinds of loads. Because of the greater vari-
ability and uncertainty of the live load and other loads in comparison with the dead load, a
uniform reliability for all structures is not possible.

“. .. Briefly, LRFD uses a different factor for each type of load and another factor for
the strength or resistance. Each factor is the result of a statistical study of the variability of
the subject quantity. Because the different factors reflect the degrees of uncertainty in the
various loads and the resistance, a uniform reliability is possible.”
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DETERMINING IF A GIVEN BEAM
IS COMPACT OR NON-COMPACT

A designer plans to use a W6 x 15 and a W12 x 65 beam in (a) A6 steel (F, = 36 ksi [248
MPa)], and (b) with F, = 50 ksi [344.5 MPa]) and wishes to determine if the beams are
compact or non-compact.

Calculation Procedure:

For the W6 x 15 beam

1. Analyze the W6 x 15 beam

Refer to the AISC Manual table, namely “Limiting Width-Thickness Ratios for Beams”
and its illustration “Definition of widths (b and /) and thickness”, the flanges of a W
shape are given by

65

%= VF,

y

where A, = limiting width-thickness ratio for compact section.
Substltutmg for each of the two beams, we have

65
=1 if F,=36ksi (248 MP
e = =108 if F,=36ksi( a)
" VF, | 65 .
\/% =92 if Fy = 50 ksi (344.5 MPa)

2. Compute the data for the web of a W shape
Using the same equation as in Step 1, for the web of a W shape

640

=106.7 if F, =36ksi(248 MP
o640 V36 t i (248 MPa)
? VF, | 640 , .
Use =905 if F,=50ksi (3445 MPa)

3. Determine if the beam is compact
From the Properties Tables for W Shapes, in Part 1 of the AISC LRFD Manual (Compact
Section Criteria): fora W6 x 15

b
ﬂange2=—f=ll.5
t 2

k.
web . =21.6

w

Since flange (b/t = 11.5) > (A, 10.8), the W x 15 beam is noncompact in A36 steel. Like-
wise, it is noncompact if F,, = 50 ksi (344.4 Mpa).

For the W12 x 65 beam

4. Compute the properties of the beam shape
From the AISC Manual “Properties Tables for W Shapes”, fora W12 x 65
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b
flange LA/ - 9.9
2
he
web 7= 24.9

w

(a) In A36 steel

flange A, = 10.8
See W6 x 15
web A, =249

Since flange (b/t = 9.9) < (A, = 10.8), and web (A1, = 24.9) < (A, = 106.7), a W12 x
65 beam is compact in A36 steel.

(b) However, if F, = 50 ksi (344.5 MPa)

flange A, =9.2
See W6 x 15
web A, =90.5

Because flange (b/ =9.9) > (A, = 9.2), a W12 x 65 beam is noncompact if F, = 50 ksi
(344.5 MPa)

Related Calculations: The concept of compactness, states Abraham J. Rokach,
MSCE, AISC, relates to local buckling. Cross-sections of structural members are classi-
fied as compact, noncompact, or slender-element sections. A section is compact if the
flanges are continuously connected to the web, and the width-thickness ratios of all its
compression elements are equal to, or less than, A,

Structural steel members tih compact sections ¢an develop their full strength without
local instability. In design, the limit state of local buckling need not be considered for
compact members.

This procedure is the work of Abraham J. Rokach, MSCE, AISC, Associate Director
of Education, American Institute of Steel Construction. SI values were prepared by the
handbook editor.

DETERMINING COLUMN AXIAL
SHORTENING WITH A SPECIFIED LOAD

A W10 x 49 column, 10ft (3m) long, carries a service load of 250 kips (113.5 Mg). What
axial shortening will occur in this column with this load?

Calculation Procedure:

1. Choose a suitable axial displacement equation for this column
The LRFD equation for axial shortening of a loaded column is

) Pl
Shortening, A = E;
g
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where A = axial shortening, in (cm); P = unfactored axial force in member, kips (kg); /=
length of member, in (cm); £ = modulus of elasticity of steel = 29,000 ksi (199.8 MPa);
A, = cross sectional area of member, sq in (sq cm).

2. Compute the column axial shortening
Substituting,

Pl 250 kips x (10.0 ft x 12 in/ft)
EA, 29,000 kips/in® x 14.4 in?

Shortening, A =
g

=0.072in (0.183 cm).

Related Calculations: Use this equation to compute axial shortening of any steel
column in LRFD work. This procedure is the work of Abraham J. Rokach, MSCE, Amer-
ican Institute of Steel Construction.

DETERMINING THE COMPRESSIVE
STRENGTH OF A WELDED SECTION

The structural section in Fig. 364 is used as a 40-ft (12.2-m) column. Its effective length
factor K, = K, = 1.0. Determine the design compressive strength if the steel is A36.

Calculation Procedure:

1. Choose a design compressive strength
The design compressive strength is given by:

L= bF, 4y

The values of ¢,F,, can be obtained from the Table, “Design Stress for Compression
Members of 36 ksi Specified Yield-Stress Steel, ¢ = 0.85” in the AISC Manual, if Ki/r is
known. With K7 = 1.0 x 40.0 ft x 12 in/ft = 480 in (1219 cm), then

.y
A

A= (18 in)2 - (17 in)* = 35.0 in?
_ (18in— (17 in)*

L=I=I ™ = 1788 in* (225.8 sq cm)
2. Find the Klr ratio for this section
With the data we have,

r 7.15in
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#an .
M, = 540kipft (732 cm) W24 x 76
Cb = 1.0
$M, = 343 kip-ft
<4 (465 kNm)
1 + L,
L,=80f L =234
(2.4m) (7.1m)
Q)]
FIGURE 36

3. Determine the design compressive strength of this section

Using the suitable AISC Manual table, namely “Design Stress for Compression Members
of 36 ksi Specified Yield-Stress Steel, ¢, = 0.85,” and interpolating, for Ki/r = 67.2, ¢, F,,
= 24.13 ksi (166.3 Mpa) the design compressive strength ¢.P, = 24.13kips/in? x 35.0 in?
= 845 kips (3759 kN).

Related Calculations. This procedure is the work of Abraham J. Rokach, MSCE,
Associate Director of Education, American Institute of Steel Construction. SI values were
prepared by the handbook editor.

DETERMINING BEAM FLEXURAL DESIGN
STRENGTH FOR MINOR- AND MAJOR-AXIS
BENDING

For a simply supported W24 x 76 beam, laterally braced only at the supports, determine
the flexural design strength for (a) minor-axis bending and (b) major-axis bending. Use
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the “Load Factor Design Selection Table for Beams” in Part 3 of the AISC LRFD
Manual.

Calculation Procedure:

1. Determine if the beam is a compact section

The W24 x 76 is a compact section. This can be verified by noting that in the Properties
Tables in Part 1 of the AISC LRFD Manual, both b,/2t;and h /t,, for a W24 x 76 beam are
less than the respective flange and web values of A, for F,, = 36 ksi (248 MPa).

2. Find the flexural design strength for minor-axis bending

For minor- (or y-) axis bending, M,,, = M,,, Z F, regardless of unbraced length (Eq. [56]).
The flexural design strength for minor-axis bending of a W24 x 76 is always equal to
OpM,, = $Z,F, =0.90 x 28.6 in> x 36 ksi = 927 kip-in = 77kip-ft (104 kNm).

3. Compute the flexural design strength for major-axis bending

The flexural design strength for major-axis bending depends on C, and L,. For a simply
supported member, the end moments M, =M, = 0; C, = 1.0.

4. Piot the results

For 0 <L, < (L, = 8.0ft), $,M, = ¢$,M,, = 540 kip-ft (732 kNm).

At L, =L, =234 ft, $,M,, = ¢,M, = 343 kip-ft (465 kNm). Linear interpolation is re-
quired for L, < L, <L,. For L, > L,, refer to the beam graphs in Part 3 of the AISC LRFD
Manual.

Figure 365 shows the data plotted for this beam, after using data from the AISC table
referred to above.

Related Calculations. This procedure is the work of Abraham J. Rokach,
MSCE, Associate Director of Education, American Institute of Steel Construction. SI val-
ues were prepared by the handbook editor.

DESIGNING WEB STIFFENERS
FOR WELDED BEAMS

The welded beam in Fig. 37a (selected from the table of Built-Up Wide-Flange Sections
in Part 3 of the AISC LRFD Manual) frames into the column in Fig. 37b. Design web
stiffeners to double the shear strength of the web at the end panel.

Calculation Procedure:

1. Determine the nominal shear strength for a stiffened web
At the end panels there is no tension field action. The nominal shear strength for a stiff-
ened web is, using the AISC LRFD Manual equation, V, = 0.644,,F,C,,. Assuming

h k 44,000
_ > 2 4 l— - —
t, 3 VF’ G (W1, )F,

44,000 _ , 26400k
(W )PF, " (Wi,

Substituting, we obtain

V,=0.64,F, x
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FIGURE 37

The case of no-stiffeners corresponds to k= S5.
2. Check the original assumptions for doubling the shear strength
To double the shear strength, I k=2 x 5 = 10. Then in AISC Equation A-G3-4,
5
k=5+ =10
(a/h)?
This implies a/h = 1.0 or a = k; thus, the clear distance between transverse web stiffeners
a = h =56 in (142.2 cm). Checking the original assumption we obtain

h _ 56in k 10
b3 ype9)> (234 [=234 j—=123. k.
(tw 044 in 8) ( NE TP \/; 33) ©

3. Design the stiffener, trying a pair of stiffener plates
Stiffener design can be performed thusly. Because tension field action is not utilized, the

equation I, = at3 j must be satisfied, where

25
= =2 2>,
I amy 0.5
j=22 _2-0s

I, = 56 in x (0.44 in)® x 0.5 = 2.34 in* (97.4 cm*)

st =

Try a pair of stiffener plates, 2.5 in x 0.25 in (6.35 x 0.635 cm), as in Fig. 38. The mo-
ment of inertia of the stiffener pair about the web centerline

. .
,=32m xl 25 AN 5 35int>234in* ok (1394 cm®>974cm?) ok
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(6.35cm) —| J#—0.25in (0.635 cm)

0.44in F 2 _ J| 5.44in
(1.1 cm)-f N (13.8 cm)
(6.35cm) 2.5in
FIGURE 38

4. Try a single stiffener plate
Using the plate in Fig. 39, which is 3.5 x 0.25 in (8.89 x 0.635 c¢m), the moment of inertia
of the stiffener about the face of the web is

0.25in x (3.5 in)?
L= ==
3
Related Calculations. This procedure is the work of Abraham J. Rokach, MSCE,

Associate Director of Education, American Institute of Steel Construction. SI values were
prepared by. the handbook editor.

=3.57in*>234in* ok (148.6cm*>974cm?) ok.

DETERMINING THE DESIGN MOMENT
AND SHEAR STRENGTH OF A BUILT-UP
WIDE-FLANGE WELDED BEAM SECTION

For the welded section in Fig.37a (selected from the table of Built-Up Wide-Flange Sec-
tions in Part 3 of the AISC LRFD Manual), determine the design moment and shear
strengths. Bending is about the major axis; C, = 1.0. The (upper) compression flange is
continuously braced by the floor deck. Steel is A36.

Calculation Procedure:

1. Check the beam compactness and flange local buckling

Web

1y —
(llcm)T 1

3.5in
(8.8 cm) [‘/
i

— f+—0.25in (0.635cm)

Stiffener

FIGURE 39
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Working with the “Flexural Strength Parameters” table in the Appendix of the AISC
LRFD Specification, the compactness of the beam (for a doubly symmetric I shape bend-
ing about its major axis) should first be checked:

Flange
18in
2% 1in

b
a2t =9.0
2

t

For the definition of b for a welded I shape, see the AISC LRFD Manual.

Flange

For the flange, A < A,. Therefore, the flange is compact, and M,,, = M, for the limit state
of flange local buckling (FLB).

Web
h, 56 in B
)tp—Tw' = \/7/ls—in =128.0
Web
640 640
Vl?y—\/%—1067
Web
970 970
=—F==—F7= =161
VF, V36 61.7

For the web, (A, =106.7) <(A = 128.0) < (A, = 161.7). The web is noncompact: M,, <M,
< M,,; for the limit state of web local buckling (WLB); M, is determined from AISC
LRFD Manual Eq. (A-F1-3).

2. Analyze the lateral bracing relating to the limit state of lateral-
torsional buckling (LTB)
For this continuously braced member L, = 0; M,,, = M,,, for LTB. Summarizing:

Limit State M,
LTB M,
FLB M,
WLB M <My <M,

The limit state of WLB (with minimum ,,,) governs. To determine M,,,, M,,, and M,,, for
a doubly symmetric I-shaped member bending about the major axis, refer again to the
AISC LRFD Manual table. There M, = F,Z,, M,, = F, S, for WLB and from Eq. (4-FI-3)
(for WLB):
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- A,
Mn.szpx'_(Mpx )( A A )

The properties S, and Z, of the cross section in Fig. 40 must now be calculated.

_ 1 _d_58in _
S, = C’ where c—2— 2 29 in (73.7 cm)

The contributions of the two flanges and the web to the moment of inertia I, are

Elements BT° +AD?
12
18 in x (1 in)? o . .
2 Flanges [1—2 + (18 in x 1 in)(28.5 m)z]Z =29,244 in* (1,217,227 cm?)
0.44 in x (56 in)?
Web —%m)— +0 = 6,403 in* (266,513 cm®)
35,647 in*

o 2208/ i3 3

I, Se 29 1230 in? (20,156 cm?)

To determine Z,, we calculate 34D, where A is the cross-sectional area of each element
and D represents its distance from the centroidal x axis.
In calculating Z,, the upper and lower halves of the web are taken separately.

Elements AD

Flanges [(18in x 1 in) x 28.5in]2 = 1026 in? (16,813 cm?)
2V, Webs [(28 in x 0.44 in) x 14 in]2 = 343 in® (5,620 cm?)
Z, 1369 in® (22,433 cm?)

Z, = 1369 in® (22,433 cm?)

4107 (5569 kNm)

(kip-ft)

Mu

FIGURE 40
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3. Determine the welded section flexural strength
Determining flexural strengths, we obtain
36 kips/in? x 1369 in®
P 4107 kip-ft (5569 kNm)

My = 2= 12 in/ft
kips/in? x 1230 in®
My =F,8,= 2 ‘psllgi:/ﬂ 3007 _ 3690 kip-ft (5004 KNm)

The value of M, can be obtained by linear interpolation using Fig. 40 or AISC Eq.

(4-F1-3): M, = 3946 kip-ft (5351 kNm).
The design flexural strength ¢, M, = 0.90 x 3946 kip-ft = 3551 kip-ft (4815 kNm).
Shear strength for an unstiffened web is governed by one of the equations below, de-

pending on A/t
For ti = f}; V,=0.6F,4, (1
w y
418 & 523 418/VF,
F <— = V,=06F A, —— 2
“NF, "4, T VF, T 2]
h _ 523 132,000
———— < — = 3
For S <VF, Vn= A i [3]

V,, = nominal shear strength, kips (kN)
A,, = area of the web, in? = dt,,
d = overall depth, in (cm)
t,, = thickness of web, in (cm)
h = the following web dimensions, in: clear distance between fillets, for rolled

shapes; clear distance between flanges for welded sections

where

Here, h/t,, = 56 in/0.44 in = 128.0.
523 523

128> 2= = ==
VF, V36

Equation (3) governs:
132,000 _ (58in x 0.44 in) x 132,000

(128.0y?

=4
Vu=dw (hlt,)?
= 204.4 kips (909.2 kN)
The design shear strength ¢V, = 0.90 x 204.4 kips = 184.0 kips (818.4 kN)

Related Calculations. This procedure is the work of Abraham J. Rokach,
MSCE, Associate Director of Education, American Institute of Steel Construction. SI val-

ues were prepared by the handbook editor.
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FINDING THE LIGHTEST SECTION
TO SUPPORT A SPECIFIED LOAD

Find the lightest W8 in A36 steel to support a factored load of 100 kips (444.8 kN) in ten-
sion with an eccentricity of 6 in (15.2 cm). The member is 6 ft (1.8 m) long and is lateral-
lv braced only at the supports; C, = 1.0. Try the orientations (a) to (c) shown in Fig. 41.

Calculation Procedure:

1. Try the first orientation, (a), Fig. 41
Given

P,=100kips (448 kN); M, =Pe=—"1—

= 50 kip-ft (67.8 kNm)
For orientation (@) in Fig. 41
P, =100 kips, M, = 50 kip-ft, M, =0
Try a W8 x 28: the design tensile strength (for a cross section with no holes)
& .P,=¢,F,4,=0.90 x 36 ksi x 8.25 in> = 267 kips (1188 kN)

For (L, = 6.0 ft) <(L, = 6.8 ft), the design flexural strength for x-axis bending

o 100 kips ® 100 kips
e=6inI e=6i{
—_— e o |— - X -—

(a) (b)

6in=152cm

100 = 444.8 kN

42in=10.7 cm

FIGURE 41
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0.90 x 27.2 in® x 36 ksi
12 in/ft
which is also the tabulated value for ¢,M,, for a W8 x 28 in the Beam Selection Table in

Part 3 of the AISC LRFD Manual.
Since

oM, = oM, = §Z.F, = =73.4 kip-ft (99.5 kNm)

P, ;
= 100Kips _ 57502
é,P, 267 kips

the first of two interaction formulas applies.
P, 8 ( M, M,,

)51.0

Sy 9\ GoMu  bM,,
037+ 2 (LR )= 037+061=098<10 ok
‘ 9(73.4kip-ft )_' TR ok

2. Analyze the second orientation being considered
For orientation () in Fig. 41

P,=100kips (444.8kN), M, =0, M, = 50kip-fi (67.8 kNm)
Again, try a W8 x 28. For all L. the design flexural strength for y-axis bending

M,y = GsM, = G2, F,
_ 0.90 x 10.1 in® x 36 ksi
12 in/ft

Because M, = 50 kip-ft > ¢,M,, =27.2 kip-ft, a W8 x 28 is inadequate. Try a W8 x 48:
4,=14.1in? (90.0 cm?), Z, = 22.9 in® (375.3 cm?)

0.90 x 22.9 in® x 36 ksi
12 in/ft

=27.2 kip-ft (36.9 KNm)

dM,, = = 61.8 kip-ft (83.8 kNm)

y
i;"f x 14.1 in? = 457 kips (2032.7 kN)

P, = ¢, F,A4,=0.90 x 36

Because (P,/¢P,) = (100 kips/457 kips) = 0.22 > 0.2, interaction formula (H!I-1a) again
applies.

P, 8 [ My, M,
+ = ( + ) =1.0

¢tPn 9 ¢an.x ¢any

50 kip-ft

61.8 kip-ft

022+ k3 (0 +

9 ) =022+0.72=094<1.0 ok.

3. Find the section for a load eccentric with respect to both
principal axes

For orientation (¢) in Fig. 41, assume that the load is eccentric with respect to both princi-
pal axes. Referring to Fig. 41¢
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e,=ecos45°=61in % 0.707 =4.2 in (10.7 cm)

e, = e sin 45° = 6 in x 0.707 = 4.2 in (10.7 cm)

_ _ 100kips x4.2in ,
M= Pe= =252 2 = 35 4 Kip-ft (48 kNim)
100 kips x 4.2 i
M, =Pe,= ~—1‘§—Sm/xTﬂ = 35.4 kip-ft (48 kNm)

Again, try a W8 x 48. As above

P, ;
¢_P + logslf; S =0.22>02
tn

¢ .M, = 61.8 kip-ft (83.8 kNm)

Although the W8 x 48 is not listed in the Beam Selection Table in the AISC LRFD Man-
ual, L, and ¢,M,,, can be calculated. From Eq. (FI-4) (Chap. 5):

3007,  300r,

=50 x 2.08 in=104 in - 8.7 ft (2.65 m)
Since (L, = 6.0 ft) < (L, = 8.7 ft)

oMy = bM, = G, ZF,

_ 0.90 x 49.0 in® x 36 ksi
12 in/ft

= 132 kip-ft (178.9 kKNm)

In Interaction Formula (H1-1a)
002+ 8 35.4 k'1p-ft 354 kfp—ﬁ <10
132 kip-ft ~ 61.8 kip-ft

9
0.22 +8/4(0.27 + 0.57)
022+075=097<1.0 ok

The most efficient configuration is orientation (a), strong axis bending, which requires a
W38 x 28 as opposed to a W8 x 48 for the other two cases.

Related Calculations. This procedure is the work of Abraham J. Rokach, MSCE,
Associate Director of Education, American Institute of Steel Construction. SI values were
prepared by the handbook editor.

COMBINED FLEXURE AND COMPRESSION
IN BEAM-COLUMNS IN A BRACED FRAME

Select, in A36 steel, a W14 section for a beam-column in a braced frame with the follow-
ing combination of factored loads: P, = 800 kips (3558 kN); first-order moments
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M, =200 kip-ft (271 kNm); M, = 0; single-curvature bending (i.e. equal and opposite end
moments); and no transverse loads along the member. The floor-to-floor height is 15 ft
(4.57 m).

Calculation Procedure:

1. Find the effective axial load for the beam-column

This procedure considers singly and doubly symmetric beam-columns: members subject-
ed combined axial compression and bending about one or both principal axes. The combi-
nation of compression with flexure may result from (either)

(a) A compressive force that is eccentric with respect to the centroidal axis of the
column, as in Fig. 424

(b) A column subjected to lateral force or moment, as in Fig. 42b

(c) A beam transmitting wind or other axial forces, as in Fig. 42¢

Interaction Formulas:
The cross sections of beam-columns must comply with formula (HI-1a) or (HI-1b),
whichever is applicable.

For (P,/¢,P,) = 0.2
P +§< Mo | My )51.0 (Hl-1a)
oL, 9\ ¢M, M,
For (P/é.P,) <0.2
Pu +( My | My >s1.o (H1-1b)
26, \ dM,, DM,

For beam-columns:

M., M, = required flexural strengths (based on the factored loads) including
second-order effects, kip-in or kip-ft

P
_e.'._ P
—_-1 #
t
| —
| —
P33 3 < | P
. — S »
| _—
|
//'[/// 77777
(@) ) ©

FIGURE 42, Combined compression and flexure.



1.152 STRUCTURAL STEEL ENGINEERING AND DESIGN

P, = required compressive strength (based on the factored loads), kips
¢ P, = design compressive strength, kips (kN)
bsM,,, bM,, = design flexural strengths, kip-ft (kNm)
¢, = resistance factor for compression = 0.85
¢, = resistance factor for flexure = 0.90

The subscript x refers to bending about the major principal centroidal (or x) axis; y refers
to the minor principal centroidal (or y) axis.

Simplified Second-Order Analysis

Second-order moments in beam-columns are the additional moments caused by the axial
compressive forces acting on a displaced structure. Normally, structural analysis is first-
order; that is, the everyday methods used in practice (whether done manually or by one of
the popular computer programs) assume the forces as acting on the original undeflected
structure. Second-order effects are neglected. To satisfy the AISC LRFD Specification,
second-order moments in beam-columns must be considered in their design.

Instead of rigorous second-order analysis, the AISC LRFD Specification presents a
simplified alternative method. The components of the total factored moment determined
from a first-order elastic analysis (neglecting secondary effects) are divided into two
groups, M, and M,.

1. M, —the required flexural strength in a member assuming there is no lateral transla-
tion of the structure. It includes the first-order moments resulting from the gravity
loads (i.e., dead and live loads), calculated manually or by computer.

2. Njy—the required flexural strength in a member due to lateral frame translation. In a
braced frame, M, = 0. In an unbraced frame, M, includes the moments from the lateral
loads. If both the frame and its vertical loads are symmetric, M}, from the vertical loads
is zero. However, if either the vertical loads (i.e., dead and live loads) or the frame
geometry is asymmetric and the frame is not braced, lateral translation occurs and M,,
# 0. To determine M,, (a) apply fictitious horizontal reactions at each floor level to
prevent lateral translation and (b) use the reverse of these reactions as “sway forces” to
obtain M. This procedure is illustrated in Fig. 43. As is indicated there, M, for an un-
braced frame is the sum of the moments due to the lateral loads and the “sway forces.”

Once M,, and M,, have been obtained, they are multiplied by their respective magnifi-
cation factors, B, and B,, and added to approximate the actual second-order factored mo-
ment M,

M, =B\M,, + B,M, (H1-2)
As shown in Fig. 44, B, accounts for the secondary P — § effect in all frames (includ-

ing sway-inhibited), and B, covers the P — A effect in unbraced frames. The analytical ex-
pressions for B, and B, follow.

Cn
= —=1. -
B, (1-PJP) 1.0 (HI-3)
where P, is the factored axial compressive force in the member, kips
_ mEl

<&y [8.1]
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P, P,
i R, V. +R
L |P | |7 '
v, R, V,+R,
e, L e, |
£ R, V;+Ry

1 1 4 1 1 L

Original frame = nonsway frame + sway frame
for M, for M,

FIGURE 43. Frame models for M,, and M,,.

where K = 1.0, I is the moment of inertia (in%) (cm*) and / is the unbraced length (in) (cm)
(Both I and / are taken in the plane of bending only.)
The coefficient C,, is determined as follows.

(1) For restrained beam-columns not subjected to transverse loads between their sup-
ports in the plane of bending

c. 06042 Hi-4
n=06-04 7 (H1-4)

where M,/M, is the ratio of the smaller to larger moment at the ends of the portion
of the member unbraced in the plane of bending under consideration. If the rota-

A

P HNP
[

Y
\ M, = HL
pp— MI:Z!INA;;P" L / M";Zhb-lt,PA
' |
Y s
@ b)

FIGURE 44, Illustrations of secondary effects. (@) Column in braced frame; (b) Column in
unbraced frame.
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tions due to end moments M; and M, are in opposite directions, then M,/M, is
negative; otherwise M,/M, is positive.

(2) For beam-columns subjected to transverse loads between supports, if the ends are
restrained against rotation, C,, = 0.85; if the ends are unrestrained against rotation,
C.=1.0.

Two equations are given for B, in the AISC LRFD Specification:

1
B=—1 (HI-5)
oh
1-3 P,‘(2 HL)
or
1
B="3p, o
Y

where 3P,= required axial strength of all columns in a story (i.e., the total factored
gravity load above that level), kips
3., = translational deflection of the story under consideration, in
S.H= sum of all horizontal forces producing A, kips
L = story height, in
3P, = summation of P, for all columns in a story.

Values of P, are obtained from Eq. [8.1], considering the actual K and / of each column in
its plane of bending. Equation (H1-5) is generally the more convenient of the two formu-
las for evaluating B,. The quantity A_,/L is the story drift index. Often, especially for tall
buildings, the maximum drift index is a design criterion. Using it in Eq. (H1-5) facilitates
the determination of B,.

For columns with biaxial bending in frames unbraced in both directions, two values of
B, (B, and B,,) are needed for each column and two values of B, for each story, one for
each major direction. Once the appropriate B, and B, have been evaluated, Eq. (H1-2) can
be used to determine M,,, and M, for the applicable interaction formula.

Preliminary Design

The selection of a trial W shape for beam-column design can be facilitated by means of an
approximate interaction equation given in the AISC LRFD Manual. Bending moments
are convened to equivalent axial loads as follows.

Pu,eff=Pu + Muxm + Mume [82]

where P, . is the effective axial load to be checked against the Column Load Table in
Part 2 of the AISC LRFD Manual; P,, M,,, and M, are as defined in interaction formulas
(H1-1a) and (H1-1b) (P, kips; M,,, M, kip-ft); and m and U are factors adapted from
the AISC LRFD Manual.

Once a satisfactory trial section has been selected (i.e., P, o« the tabulated ¢.P,), it
should be verified with formula (H1-1a) or (HI-1b).

For a braced frame, K = 1.0 for design; KL, = KL, = 1.0 x 15 ft. Select a trial W14
shape using Eq. [8.2].

Pu’eff=Pu+chm +Mume
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For a W14 with KL = 15 ft m = 1.0 and U = 1.5. Substituting in Eq. [8.2], we obtain
Py ete =800 + 200 x 2.0 + 0 = 1200 kips (5338 kN)

In the AISC Column Load Tables (p. 2-19 of the LRFD Manual) if F, = 36 ksi (248
mPa) and KL = 15 ft (4.57 m), ¢.P, = 1280 kips (>P,, ¢ = 1200 kips) for a Wi4 x 159.

2. Analyze the braced frame
Try a W14 x 159. To determine M, (the second-order moment), use Eq. (H1-2).

Mu = Bant + BZMIt
Because the frame is braced, M, = 0.
M,=B M, or M, =B x200kip-ft

According to Eq. (H1-3)

B, = Cn o 1.0
Y a-P/pR)
where C,, = 0.6 — 0.4(M,/M,) for beam-columns not subjected to lateral loads between

supports.
For M, = M, = 200 kip-ft (271 kNm) in single curvature bending (i.e., end moments in
opposite directions)

M,
M __200 _
M, 200

C,=0.6-04(-1.0)=1.0

Fora W14 x 159, I, = 1900 in* (79,084 cm®)

7EL, _ a* % 29,000 kips/in? x 1900 in* .
= s = : = 4
T Cox1s x5 /) 16,784 kips (74,655 kN)

In Eq. (HI-3)

Py

B~ 1.0
'™ 1800 kips/16,784 kips

Here, M, = 1.05 x 200 kip-ft = 210 kip-ft (284.6 kNm) the second-order required flexur-
al strength. (Substituting M,,, = 210 kip-ft in preliminary design, Eq. [8.2] still leads to a
W14 x 159 as the trial section.)

Selecting the appropriate beam-column interaction formula, (HI-1a) or (H1-1b), we
have

P, 800 kips
=———=0.63>02
&P, 1280 kips

Use formula (H1-1a), which, for M, = 0, reduces to
P, M,
&P, PM,,

8
+ — =1.0
9
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3. Determine the design flexural strength

To determine ¢, M, (the design flexural strength), refer to the Load Factor Design Selec-
tion Table for Beams in the AISC LRFD Manual. Since the W14 x 159 is not tabulated
therein, the basic equations are used instead.

C, =175 + 1.05 M, +0.3 M s
175105 M os(MY 2o

Again, M\/M, =~1.0.
C,=1.75+1.05(-1.0) + 0.3(-1.0*= 1.0

If C, = 1.0, M, = M,, Z,F, for bending about the x axis if L, = L,; L, = (300r,/F) for W
shapes bent about the x axis [Eq. (F/-4)]. Fora W14 x 159, r,=4.0 in (10.2 cm) and
[ - (300 x 4.0 iny/(12 in/ft) 167 ft (5.1
»= V36 =16.7 ft (5.1 m)

Because (L, = 15.0 ft) < (L, = 16.7 f),

287 in? x 36 kips/in®
12 in/ft

and ¢, M,,. = 0.90 x 861 kip-ft = 775 kip-ft (1050 kNm)
Substituting the interaction formula, we obtain

8 210 kip-ft

65+~
065+ 5 X 75 kp

=0.63+0.24=0.87<1.0 ok.

M, =ZF,= = 861 kip-ft (1167 kNm)

By a similar solution of interaction formula (H1-1a), it can be shown that a W14 x 145 is
also adequate.

Related Calculations. This procedure is the work of Abraham J. Rokach, MSCE,
Associate Director of Education, American Institute of Steel Construction. SI values were
prepared by the handbook editor.

SELECTION OF CONCRETE-FILLED
STEEL COLUMN

Select a 6-in (15.2-cm) concrete-filled steel-pipe column for a required axial compressive
strength of 200 kips (889.6 kN), where KL = 10.0 ft (3.05 m), F, = 36 ksi (243 MPa),
/" =3.5ksi (24.1 MPa), using normal-weight concrete = 145 Ib/cu ft (2320 kg/cu m)

Calculation Procedure:

1. Try a standard-weight concrete-filled pipe
2. Analyze the selected column
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Check minimum wall thickness of pipe, Fig. 45:

[F, [ 36ksi ,
=D |—L=6625in [ —————>—— =0. .
t 35 6.625 in 8 x 29,000 ksi 0.083 in (0.21 cm)

t=0280in>0.083in ok
Check minimum cross-sectional area of steel pipe:

4,= (R~ RY) “ (D>~ D7)

I

%[(6.625 in)2 — (6.065 in)?] = 5.6 in? (36.1 cm?)

4,= = Zpz= % x (6.065 in)* = 28.9 in? (186.5 cm?)

4
4 5.6 in?
A,+ A4,  5.6in?+28.9 in?

S

=0.16>4% ok.

3. Analyze the selected column
In the absence of reinforcing bars:
A

me=Fy+czfc’jf

E,=E+ EAC
m C3 cA

§

where E,=w'3 Vf ¢, =0.85,c; = 04.
The modulus of elasticity of the concrete

E_ =145'3'V3.5=13267 ksi

The modified yield stress for composite design is

28.9 in?
5.6 in?

Fy =36 ksi +0.85 x 3.5 ksi X

6.065 in (15.4 cm) inside diameter D,

6.625 in (16.8 cm) outside diameter D

+=0.280 in (0.71 cm)

FIGURE 45

1.157
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=51.4 ksi (354.1 MPa)

The modified modulus of elasticity for composite design is

in2
E,, = 29,000 ksi + 0.4 x 3267 ksi x —5211
5.6 in?
= 35,744 ksi (246,276 MPa)

The radius of gyration of a hollow circular shape

VD?+ D}

r= — (See AISC LRFD Manual, p. 7-21.)
V/(6.625 in)? + (6.065 in)?
- V(6825 i)y + (6065 i) _, 511 (572 em)

4

for the bare steel pipe.
The modified radius of gyration for composite design

#,, =7 = 0.3D (the overall dimension)
=2.25in = (0.3 x 6.625 in=1.99 in)
=2.25in(5.72 cm)

The slenderness parameter

_ Kl [Fw
c r.mV\ E,

_100fx12iwf [ Slaksi _ o
225inxmw 35744ksi

F,,=(0.658%)F,,
= 0.658©647 x 51.4 ksi = 43.2 ksi (297.6 MMPa)

Because A, < 1.5

The design compressive strength

&L, = G AF,,
=0.85 x 5.6 in? x 43.2 kips/in?
= 205 kips > 200 kips required
& P, =205 kips (911.8 kN) for this case is also tabulated on p. 4-100 of the AISC LRFD

Manual.)
The 6-in (15.2 cm) standard-weight concrete-filled pipe-column is satisfactory.

Related Calculations. This procedure is the work of Abraham J. Rokach,
MSCE, Associate Director of Education, American Institute of Steel Construction. SI val-
ues were prepared by the handbook editor.
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DETERMINING DESIGN COMPRESSIVE
STRENGTH OF COMPOSITE COLUMNS

Determine the design compressive strength of a W8 x 40 (A36 steel) encasedina 16 x 16
in (40.6 x 40.6 cm) (£’ = 3.5 ksi) (24.1 MPa) normal-weight concrete column in Fig. 46.
Reinforcement is four No. 7 (Grade 60) bars longitudinally, and No. 3 ties at 10 in (25.4
cm) horizontally;

Calculation Procedure:

1. Check the minimum requirements for the column
Checking minimum requirements

(a) Fora W8 x 40, 4, = 11.7 in?, total area = 16 in x 16 in = 256 in? (1652 cm?)

11.7 in? -
25612 =4.6% > 4% minimum  ok.
(b) Lateral tie spacing = 10 in (25.4 cm)

<2 x 16 in outer dimension = 10.7 in (27.2cm) o.k.

Minimum clear cover=1.5in (3.8 cm) o.k.
Horizontal No.3 bars: A4, = 0.11 in® per bar

>0.007 in? x 10 in spacing = 0.07 in? (0.45 cm?) ok
Vertical No.7 bars: 4, =0.60 in® per bar
>0.007 in? x 11.4 in spacing = 0.08 in? (0.52 cm?) ok.

(¢) 3.0ksi<(f.' =3.5ksi) < 8.0 ksi for normal weight concrete ok.
(d) Use F,, = 55 ksi (378.9 MPa) for reinforcement in calculations, even though actual
F,, = 60 ksi (413.4 MPa) for Grade 60 bars.

(40.6 cm)
L 16 in 4
[l =l
- ..
T e renr) T 1Sin (3.8em)
g N — by 1+04in (1.0cm)
] (AL [ F04in 289em)
(40.6 cm) 16in g 11.4 in
b
R R Bvsonavscn eracs s seads

FIGURE 46
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2. Determine the modified yield stress and modulus of elasticity
Determine F,,, and E,,:

4, A,

Foy=F,+cF, Z +cyf! Zs—

where 4, = the cross-sectional area of four No. 7 longitudinal bars = 4 x 0.6 in?> = 2 4 in?
(15.5 cm?)

A, = cross-sectional area of W8 x 40 = 11.7 in? (75.5 cm?)
A= 16inx 16 in— (11.7 in? + 2.4 in?) = 242 in? (1561 cm?)

For concrete-encased shapes, ¢, = 0.7 and ¢, = 0.6.

302 in2
-ﬂ+0.6x3.5ksixl-421—n

kit 0. .
Fmy =36 kst + 0.7 55 ks 1 75 1.7 i

= 87.3 ksi (601.5 MPa)
E,=E+ 4.
m CeEc As

where ¢; = 0.2 for concrete-encased shapes
E = w's \/E = 145'5 V3.5 = 3267 ksi (24,577 MPa) for 3.5-ksi normal-weight

(145 1b/ft%) (2320 kg/cu m) concrete
E,, = 29,000 ksi + 0.2 x 3267 ksi x 242 in?/11.7 in? = 42,513 ksi (292,915 MPa)

The modified radius of gyration

= 1,({W8 x 40) = 0.3 x 16 in (overall dimension)
=2.04in = 4.80in (12.2 cm)
=4.80in (12.2 cm)

The slenderness parameter

__ K [Ew
‘ R,m \ E,

_150Rx12ivk [ 873ksi _ .,
480inx 7 \ 42,513ksi

F,,=(0.658")F,,
=0.65805” x 87.3 ksi = 77.2 ksi (531.9 MPa)

The critical stress

3. Compute the design compressive strength
The design compressive strength

¢0Pn = ¢CASFCY
=0.85 x 11.7 in? x 77.2 kips/in® (531.9 MPa)

=768 kips (5292 MPa)
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(¢.P, = 768 kips for this case is also tabulated on p. 4-73 of the AISC LRFD Manual.)
The 768-kip design strength is considerably more than the 238-kip (1640 Mpa) design
strength of a noncomposite W8 x 40 column under the same conditions.

Related Calculations. This procedure is the work of Abraham J. Rokach,
MSCE, Associate Director of Education, American Institute of Steel Construction. SI val-
ues-were prepared by the handbook editor.

ANALYZING A CONCRETE SLAB
FOR COMPOSITE ACTION

A W18 x 40 interior beam is shown in Fig. 47. Steel is A36, beam span is 30 ft 0 in (9.14
m), and beam spacing 10 ft 0 in (3.04 m). The beams are to act compositely with a 5-in
(12.7-cm) normal-weight concrete slab; £’ = 5.0 ksi (41.3 kN). Determine: (a) The effec-
tive width of concrete slab for composite action; (b) V), (the total horizontal shear force to
be transferred) for full composite action; (¢) The number of 0.75-in (1.9-cm) diameter
shear studs required if F,, = 60 ksi (413.4 kN).

Calculation Procedure:
1. Find the effective width of concrete slab for composite action

For an interior beam, the effective slab width on either side of the beam centerline is the
minimum of

% = % =3.75 ft=45 in (114.3 cm)
s _ 100t _
S =5 =500f(152m)

The effective slab width is 2 x 45 in = 90 in (228.6 cm).

2. Determine the total horizontal shear force for full
composite action
In positive moment regions, ¥, for full composite action is the smaller of

0.85/74,=0.85 x 5 ksi x (90 in x 5 in)
= 1913 kips (8509 kN)

.

f TSm
T Tonee
(12.7 cm)
| s=10ft0in | s=10ft0in
(3.04 cm) (3.04 cm)

FIGURE 47
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AF,=11.8 in? x 36 ksi = 425 kips (1890 kN)
V, = 425 kips (1890 kN)

3. Find the number of shear studs required
The nominal strength of a single shear stud [from Eq. (/5-1)] is

Q’l = O'SASC f;'EC S ASCFM
For a ¥%-in-diameter stud,

i 2
4 - ,,(072A> = 0.44 in? (2.84 cm?)

E.= w'S V! = 14525 V/5.0 = 3904 ksi (26,899 kNm)

F,= 60 ksi (413 kNm)

0, = 0.5 x 0.4 in2 V/5.0 ksi x 3904 ksi =< 0.44 in® x 60 ksi (413 kNm)
= 30.9 kips = 26.4 kips (117.4 kN)
= 26.4 kips per stud (117.4 kN per stud)

The number of shear connectors between the points of zero and maximum moments is

Vi _ 425kips ..
= h 2 XIPS .
0, 26.4 ps/stud

=16.1 or 17 studs

For the beam shown in Fig. 48, the required number of shear studs is 2n =2 x 17 =34,

Assuming a single line of shear studs (over the beam web), stud spacing = 30.0 ft/34 =
0.88 ft = 10.6 in (26.9 cm). This is greater than the six-stud diameter [or 6 x % in=4.5 in
(11.4 cm)] minimum spacing, and less than the eight slab thickness for 8 x 5 in = 40 in
(101.6 cm)] maximum spacing, which is satisfactory.

Related Calculations. This procedure is the work of Abraham J. Rokach, MSCE,
Associate Director of Education, American Institute of Steel Construction. SI values were
prepared by the handbook editor.

¢

" n studs ,!‘ n studs L

[ + 1
& ;) e

FIGURE 48
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DETERMINING THE DESIGN SHEAR
STRENGTH OF A BEAM WEB

The end of a W12 x 86 beam (A36 steel) has been prepared as shown in Fig. 49 for con-
nection to a supporting member. The three holes are 15/16 in (2.38 cm) in diameter for
7/8-in (2.22-cm)-diameter bolts. Determine the design shear strength of the beam web.
Calculation Procedure:
1. Find the applicable limit states
The applicable limit states are shear yielding, shear fracture, and block shear rupture. For
shear yielding [of gross section (1) in Fig. 49 ]

¢R, =090 x 0.64,.F, J5-3)

Aye = (d-cope)t =(12.53 in— 2 in) x 0.515 in = 5.42 in? (34.96 cm?)
¢R,=0.9 x 0.6 x 542 in? x 36 ksi = 105 kips (467 kN)

For shear fracture [of net section (1) in Fig. 11-9]

¢R,=0.75 x 0.64,,F, J4-1)
A,s = (d-cope-3d,)r=(12.53 in—2 in - 3 x /1 in) x 0.515 in = 3.97 in? (25.6 cm?)

¢R,=0.75 % 0.6 x 3.97 in? x 58 ksi = 104 kips (462.6 kN)

For block shear rupture [of section (2) in Fig. 11-9] ¢ = 0.75 and R, = the greater value of

0.64,,F, + A,F, (C-J4-1)
0.64,,F, + 4.F, (C-J4-2)
(38cm) 14in

+ 2incope (5.08 cm)

1 8
) Hin (3.8cm)
o
d=1253in o 2@3in=6in
(31.8cm) 5| (15.2 cm)
o-[-@
W12 x 89 i

FIGURE 49
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Where A,, = gross area of the vertical part of (2)

A, = net area of the vertical part of (2)

A, = gross area of the horizontal part of (2)

A, = net area of the horizontal part of (2)

Ay = (1%21n? x 3 in) x 0.515 in = 3.86 in? (24.9 cm?)
A= (1% in+2 x 3 in x 2% x %/16) x 0.515 in = 2.66 in? (17.2 cm?)
A, =1%in x 0.515 in=0.77 in? (4.96 cm?)
A, = (1% in — ¥ x %6 in) x 0.515 in = 0.53 in® (3.42 cm?)

2. Determine the design shear strength
R, is the greater of

= 114 kips (507 kN)

kip:
06><2661n2><58 > 4077 n2><36——120k1ps(5338kN)

R, = 120 kips (533.8 kN)
SR, =0.75 x 120 kips = 90 kips (400.3 kN)

The design shear strength is 90 kips (400.3 kN), based on the governing limit state of
block shear rupture.

Related Calculations. This procedure is the work of Abraham J. Rokach, MSCE,
Associate Director of Education, American Institute of Steel Construction. SI values were
prepared by the handbook editor.

DESIGNING A BEARING PLATE FOR A BEAM
AND ITS END REACTION

The unstiffened end of a W21 x 62 beam in A36 steel rests on a concrete support (f, =3
ksi) [20.7 MPa], Fig. 50. Design a bearing plate for the beam and its (factored) end reac-
tion of 100 kips (444.8 kN). Assume the area of concrete support 4, = 6 x 4, (the area of
the bearing plate).

Calculation Procedure:

1. Find the bearing length

For the concentrated compressive reaction of 100 kips (444.8 kN) acting on the bottom
flange, the applicable limit states are (1) local web yielding and (2) web crippling. (It is
assumed that the beam is welded to the base plate and both are anchor-bolted to the con-
crete support. This should provide adequate lateral bracing to prevent sidesway web
buckling.)
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Laterally supported by floor deck j

7
][ N+25k |

1]
7777777777 7777

-

14——1—-’ ﬂ—’

B ) | N |

FIGURE 50

Corresponding to the applicable limit states are Eqs. (KI-3) and (K1-5), each of which
has N, the length of bearing, as a parameter.
Solving for N, we obtain

==¢R, = §2.5k+ N)Fa,
100 kips = 1.0(2.5 x 1% in + N) x 36 kips/in? x 0.40 in (1.01 cm)  (KI-3)

N =3.51in (8.89 cm)
£, \1.5 Fit
R,< R, = ¢68t,%[1 + 3( ﬂ)(—) ] k22 (K1-5)
d\ ¢ ty
N = 8.6in (21.8 cm)

The minimum length of bearing is N = 8.6 in (21.8 cm). Rounding up to the next full
inch, let N=9in (22.9 cm)

2. Compute the area of the bearing plate
The area of the bearing plate is determined by the bearing strength of the concrete sup-
port. Using the following equation, the design bearing strength is

;
Bob,= b X 0854y [

where VA4,/4, = 2.
Substituting in Eq. [11.6], we obtain
kips
100 kips = 0.60 x 0.85 x 3 ~ p X Ay X 2

The area of the bearing plate 4; = 32.7 in?. (210.9 cm?)
Because the bearing plate dimensions are
4, 327in?

=4y =Zz—="—"——=36in(9.14
BN = 4, B>N 9in 3.6in(9.14 cm)
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However, B cannot be less than the flange width of the W21 x 62 beam, b,= 8.24. Round-
ing up, let B=9 in (22.9 cm). A formula for bearing plate thickness is given on page 3.50

of the AISC LRFD Manual:
‘= 2.22Rn?
AjF,
Where R = 100 kips (444.8 kN)

L B-2 _9in-2x1%in
2 2

A, =BN=9in x 9 in=81 in? (522.6 cm?)

=3.13in (7.95 cm)

F, =36 ksi (248 MPa)

3. Select the bearing-plate dimensions
= \/2.22 x 100 kips x (3.13 in)?

~0.86in(2.18
81 in? x 36 ksi 0.86 in (2.18 cm)

Use a bearing plate 1 in X 9in x 9 in (2.54 x 22.9 x 22.9 cm)

Related Calculations. This procedure is the work of Abraham J. Rokach, MSCE,
Associate Director of Education, American Institute of Steel Construction. SI values were
prepared by the handbook editor.

DETERMINING BEAM LENGTH TO
ELIMINATE BEARING PLATE

Determine if the bearing plate chosen in the preceeding procedure can be eliminated by
altering the design.

Calculation Procedure:

1. Compute the needed thickness of the bottom flange
For the W21 X 62 beam to bear directly on the concrete support, its bottom flange must be
sufficiently thick to act as a bearing plate. Let

2
t= /% =0.615 in (1.56 cm)

the flange thickness of the W21 x 62 beam. Because B = b, = 8.24 in (20.9 cm)

n= B-2k _824in-2x1%in

3 2 =2.75in(6.99 cm)

. —
t=\/2.22><100k1ps><(2.751n) — 0615 in (1.56 cm)

A, x 36 kips/in®
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2. Find the required length of bearing of the beam

A, =123 in? (>32.7 in? required for bearing on concrete)

_A4 A 123 in?

3 5, 824in =15.0in (38.1 cm)

By increasing the length of bearing of the beam to 15 in (38.1 cm), the bearing plate can
be eliminated.

Related Calculations. This procedure is the work of Abraham J. Rokach, MSCE,
Associate Director of Education, American Institute of Steel Construction. SI values were
prepared by the handbook editor.

PART 3

HANGERS, CONNECTORS, AND
WIND-STRESS ANALYSIS

In the following Calculation Procedures, structural steel members are designed in accor-
dance with the Specification for the Design, Fabrication and Erection of Structural Steel
Jfor Buildings of the American Institute of Steel Construction. In the absence of any state-
ment to the contrary, it is to be understood that the structural-steel members are made of
ASTM A36 steel, which has a yield-point stress of 36,000 Ib/in? (248.2 MPa).
Reinforced-concrete members are designed in accordance with the specification
Building Code Requirements for Reinforced Concrete of the American Concrete Institute.

DESIGN OF AN EYEBAR

A hanger is to carry a load of 175 kips (778.4 kN). Design an eyebar of A440 steel.

Calculation Procedure:

1. Record the yield-point stresses of the steel
Refer to Fig. 1 for the notational system. Let subscripts 1 and 2 refer to cross sections
through the body of the bar and through the center of the pin hole, respectively.

Eyebars are generally flame-cut from plates of high-strength steel. The design provi-
sions of the AISC Specification reflect the results of extensive testing of such members. A
section of the Specification permits a tensile stress of 0.60f, at 1 and 0.45f, at 2, where f,
denotes the yield-point stress.
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°] From the AISC Manual for A440 steel:

If # = 0.75 in (19.1 mm), £, = 50 kips/in® (344.7
MPa).
Bore If 0.75 < ¢t = 1.5 in (38 mm), £, = 46 kips/in’
l (317.1 MPa).
If 1.5 <t =< 4in (102 mm), f, = 42 kips/in? (289.5
MPa).
=2 2. Design the body of the member,
using a trial thickness
The Specification restricts the ratio w/t to a value
! of 8. Compute the capacity P of a % in (19.1-
mm) eyebar of maximum width. Thus w = 8(%) =
6 in (152 mm); f= 0.6(50) = 30 kips/in® (206.8
w MPa); P = 6(0.75)30 = 135 kips (600.5 kN). This
| I :1:' is not acceptable because the desired capacity is

175 kips (778.4 kN). Hence, the required thick-

ness exceeds the trial value of % in (19.1 mm).

FIGURE 1. Eyebar hanger. With ¢ greater than % in (19.1 mm), the allowable
stress at 1 is 0.60f,, or 0.60(46 kips/in?) = 27.6
kips/in? (190.3 MPa); say 27.5 kips/in® (189.6
MPa) for design use. At 2 the allowable stress is
0.45(46) = 20.7 kips/in® (142.7 MPa), say 20.5
kips/in? (141.3 MPa) for design purposes.

To determine the required area at 1, use the relation 4; = P/f, where f = allowable
stress as computed above. Thus, 4, = 175/27.5 = 6.36 in? (4103 mm?). Use a plate 6% x 1
in (165 x 25.4 mm) in which 4, = 6.5 in? (4192 mm?).

3. Design the section through the pin hole

The AISC Specification limits the pin diameter to a minimum value of 7w/8. Select a pin
diameter of 6 in (152 mm). The bore will then be 6'/32 in (153 mm) diameter. The net
width required will be P/(ft) = 175/[20.5(1.0)] = 8.54 in (217 mm); D, = 6.03 + 8.54 =
14.57 in (370 mm). Set D = 14% in (375 mm), 4, = 1.0(14.75 — 6.03) = 8.72 in? (5626
mm?); A,/4; = 1.34. This result is satisfactory, because the ratio of 4,/4; must lie between
1.33 and 1.50.

4. Determine the transition radius r
In accordance with the Specification, set r = D = 14% in (374.7 mm).

ANALYSIS OF A STEEL HANGER

A 12 x ¥ in (305 x 12.7 mm) steel plate is to support a tensile load applied 2.2 in (55.9
mm) from its center. Determine the ultimate load.

Calculation Procedure:

1. Determine the distance x

The plastic analysis of steel structures is developed in Sec. 1 of this handbook. Figure 2a
is the load diagram, and Fig. 2b is the stress diagram at plastification. The latter may be
replaced for convenience with the stress diagram in Fig. 2¢, where T; = C; P, = ultimate

1.168



HANGERS, CONNECTORS, AND WIND-STRESS ANALYSIS 1.169

d
¢
A
4
] D ﬂf,
A
8 B
g l... fy
Py
(a) (b)
1C
r‘w :
A 0 B
fy
T T2
(c)
FIGURE 2

load; e = eccentricity; M, = ultimate moment = P,¢; f, = yield-point stress; d = depth of
section; ¢ = thickness of section.
By using Fig. 2¢,

P=T,=f1d—2x) ey
Also, T, = f,tx, and M, = P,e = Ty(d - x), so
x= g +te- [(—g + e)2 - ear}o'5 2

Or, x=6+22—[(6+22)* - 2.2 x 12]%5 = 1.81 in (45.9 mm).

2. Find P,
By Eq. 1, P, = 36,000(0.50)(12 — 3.62) = 151,000 Ib (671.6 kN).

ANALYSIS OF A GUSSET PLATE

The gusset plate in Fig. 3 is %; in (12.7 mm) thick and connects three web members to the
bottom chord of a truss. The plate is subjected to the indicated ultimate forces, and trans-
fer of these forces from the web members to the plate is completed at section a-a. Investi-
gate the adequacy of this plate. Use 18,000 Ib/in? (124.1 MPa) as the yield-point stress in
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150kips(667.2 kN) 31.2 kips(138.8 kN)
110kips(489.3 kN)
b /
4 4 0"
5 5 (254 mm)
(457mm) —2 d < a
436 kips mkiﬁ (L‘. 2 mm)
(1939 kN) 963 KN) 32"
b (5! mm)
13" 0"
(330 mm) 279 mm)

FIGURE 3. Gusset plate

shear, and disregard interaction of direct stress and shearing stress in computing the ulti-
mate-load and ultimate-moment capacity.

Calculation Procedure:

1. Resolve the diagonal forces into their horizontal

and vertical components

Let H, and V, denote the ultimate shearing force on a horizontal and vertical plane, re-
spectively. Resolving the diagonal forces into their horizontal and vertical components
gives (4% + 5%)%5 = 6.40. Horizontal components: 150(4/6.40) = 93.7 kips (416.8 kN);
110(4/6.40) = 68.7 kips (305.6 kN). Vertical components: 150(5/6.40) = 117.1 kips
(520.9 kN); 110(5/6.40) = 85.9 kips (382.1 kN).

2. Check the force system for equilibrium
Thus, 3Fy; = 206.0 — 43.6 — 93.7 — 68.7 = 0; this is satisfactory, as is 3.F,= 117.1 - 85.9
-312=0.

3. Compare the ultimate shear at section a-a with the

allowable value

Thus, H, = 206.0 — 43.6 = 162.4 kips (722.4 kN). To compute H,, 4., assume that the
shearing stress is equal to the yield-point stress across the entire section. Then H,, 4o =
24(0.5)(18) = 216 kips (960.8 kN). This is satisfactory.

4. Compare the ultimate shear at section b-b with the

allowable value

Thus, ¥, =117.1 kips (520.9 kN); ¥, .now = 18(0.5)(18) = 162 kips (720.6 kN). This is sat-
isfactory. ’

5. Compare the ultimate moment at section a-a with the

plastic moment

Thus, cd = 4(6)/5 = 4.8 in (122 mm); M, = 4.8(117.1 + 85.9) = 974 in‘kips (110.1 kN-m).
Or, M, = 6(206 — 43.6) = 974 inkips (110.1 kN-m). To find the plastic moment M,, use
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the relation M, = f,bd%/4, or M, = 36(0.5)(24)*/4 = 2592 in'kips (292.9 kN-m). This is sat-
isfactory.

6. Compare the ultimate direct force at section b-b

with the allowable value

Thus, P, =93.7 + 43.6 = 137.3 kips (610.7 kN); or P, =206.0 - 68.7 = 137.3 kips (610.7
kN); e=9-2=7in(177.8 mm). By Eq. 2, x=9+7-[(9+7)> -7 x 18] =4.6 in
(116.8 mm). By Eq. 1, P, 410w = 36,000(0.5)(18 — 9.2) = 158.4 kips (704.6 kN). This is
satisfactory.

On horizontal sections above a-a, the forces in the web members have not been com-
pletely transferred to the gusset plate, but the eccentricities are greater than those at a-a.
Therefore, the calculations in step 5 should be repeated with reference to one or two sec-
tions above a-a before any conclusion concerning the adequacy of the plate is drawn.

DESIGN OF A SEMIRIGID CONNECTION

A W14 x 38 beam is to be connected to the flange of a column by a semirigid connection
that transmits a shear of 25 kips (111.2 kN) and a moment of 315 in‘kips (35.6 kN-m).
Design the connection for the moment, using A141 shop rivets and A325 field bolts of
%-in (22.2-mm) diameter.

Calculation Procedure:

1. Record the relevant properties of the W14 x 38

A semirigid connection is one that offers only partial restraint against rotation. For a rela-
tively small moment, a connection of the type shown in Fig. 4a will be adequate. In de-
signing this type of connection, it is assumed for simplicity that the moment is resisted
entirely by the flanges; and the force in each flange is found by dividing the moment by
the beam depth.

i

(b) Deformation of flonge angle

(a) Semirigid connection

FIGURE 4. (a) Semirigid connection; (b) deformation of flange angle.
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Figure 4 indicates the assumed deformation of the upper angle, 4 being the point of
contraflexure in the vertical leg. Since the true stress distribution cannot be readily ascer-
tained, it is necessary to make simplifying assumptions. The following equations evolve
from a conservative analysis of the member: ¢ = 0.6a; T, = T\(1 + 3a/4b).

Study shows that use of an angle having two rows of bolts in the vertical leg would be
unsatisfactory because the bolts in the outer row would remain inactive until those in the
inner row yielded. If the two rows of bolts are required, the flange should be connected by
means of a tee rather than an angle.

The following notational system will be used with reference to the beam dimensions:
b = flange width; d = beam depth; ¢, = flange thickness; ¢, = web thickness.

Record the relevant properties of the W14 x 38; d = 14.12 in (359 mm); ¢, = 0.513 in
(13 mm). (Obtain these properties from a table of structural-shape data.)

2. Establish the capacity of the shop rivets and field bolts used

in transmitting the moment

From the AISC Specification, the rivet capacity in single shear = 0.6013(15) = 9.02 kips
(40.1 kN); rivet capacity in bearing 0.875(0.513)(48.5) = 21.77 kips (96.8 kN); bolt ca-
pacity in tension = 0.6013(40) = 24.05 kips (106.9 kN).

3. Determine the number of rivets required in each beam flange
Thus, T, = moment/d = 315/14.12 = 22.31 kips (99.7 kN); number of rivets = T/rivet ca-
pacity in single shear = 22.31/9.02 = 2.5; use four rivets, the next highest even number.

4. Assuming tentatively that one row of field bolts will suffice,
design the flange angle

Try an angle 8 x 4 x % in (203 x 102 x 19 mm), 8 in (203 mm) long, having a standard
gage of 2! in (63.5 mm) in the vertical leg. Compute the maximum bending moment M
in this leg. Thus, ¢ = 0.6(2.5 — 0.75) = 1.05 in (26.7 mm); M = T),c = 23.43 inkips
(2.65 kN'm). Then apply the relation f = M/S to find the flexural stress. Or,
f=23.43/[(/6)(8)(0.75)?] = 31.24 kips/in? (215.4 MPa).

Since the cross section is rectangular, the allowable stress is 27 kips/in? (186.1 MPa),
as given by the AISC Specification. (The justification for allowing a higher flexural stress
in a member of rectangular cross section as compared with a wide-flange member is pre-
sented in Sec. 1.)

Try a 7-in (22-mm) angle, with ¢ = 0.975 in (24.8 mm); M = 21.75 inkips (2.46
KN'm); f=21.75/("/6)(8)(0.875)? = 21.3 kips/in® (146.8 MPa). This is an acceptable stress.
5. Check the adequacy of the two field bolts in each angle
Thus, T, = 22.31[1 + 3 x 1.625/(4 x 1.5)] = 40.44 kips (179.9 kN); the capacity of two
bolts = 2(24.05) = 48.10 kips (213.9 kN). Hence the bolts are acceptable because their ca-
pacity exceeds the load.

6. Summarize the design

Use angles 8 x 4 x % in (203 x 102 x 19 mm), 8 in (203 mm) long. In each angle, use four
rivets for the beam connection and two bolts for the column connection. For transmitting
the shear, the standard web connection for a 14-in (356-mm) beam shown in the AISC
Manual is satisfactory

RIVETED MOMENT CONNECTION

A W18 x 60 beam frames to the flange of a column and transmits a shear of 40 kips
(177.9 kN) and a moment of 2500 in-kips (282.5 kN-m). Design the connection, using
%-in (22-mm) diameter rivets of A141 steel for both the shop and field connections.
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Calculation Procedure:

1. Record the relevant properties of the W18 x 60
The connection is shown in Fig. 5a. Referring to the row of rivets in Fig. 5b, consider that
there are n rivets having a uniform spacing p. The moment of inertia and section modulus
of this rivet group with respect to its horizontal centroidal axis are

g =l g prt D) :

I=p’nx 5 S ; 3)
Record the properties of the W18 x 60: d = 18.25 in (463.6 mm); b = 7.558 in (192

mm); k= 1.18 in (30.0 mm); £, = 0.695 in (17.7 mm); ¢, = 0.416 in (10.6 mm).

2. Establish the capacity of a rivet

Thus: single shear, 9.02 kips (40.1 kN); double shear, 18.04 kips (80.2 kN); bearing on

beam web, 0.875(0.416)(48.5) = 17.65 kips (78.5 kN).

3. Determine the number of rivets required on line 1 as governed
by the rivet capacity
Try 15 rivets having the indicated disposition. Apply Eq. 3 with r = 17; then make the
necessary correction. Thus, = 9(17)(172 - 1)/12 — 2(9)? = 3510 in? (22,645 cm?); § =
3510/24 =146.3 in (3716 mm).

Let F denote the force on a rivet, and let the subscripts x and y denote the horizontal

“ @@ [4"0102 mm)
3 (76 mm) 7@ 3(76mm) =
L 1-9"(533mm)

W18 X 60 a

CA.
wig X 60

(b)
w18 X 60

(o)

FIGURE 5, Riveted moment connection.
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and vertical components, respectively. Thus, F, = M/S = 2500/146.3 = 17.09 kips
(76.0 kN); F, = 40/15 = 2.67 kips (11.9 kN); F = (17.09* + 2.67%)%° = 17.30 < 17.65.
Therefore, this is acceptable.

4. Compute the stresses in the web plate at line 1
The plate is considered continuous; the rivet holes are assumed to be 1 in (25.4 mm) in di-
ameter for the reasons explained earlier.

The total depth of the plate is 51 in (1295.4 mm), the area and moment of inertia of the
net section are 4, = 0.416(51 — 15 x 1) = 14.98 in? (96.6 cm?) and I, = (1/12)(0.416)(51)?
—1.0(0.416)(3510) = 3138 in* (130,603.6 cm*).

Apply the general shear equation. Since the section is rectangular, the maximum
shearing stress is v = 1.5V/4,, = 1.5(40)/14.98 = 4.0 kips/in? (27.6 MPa). The AISC Speci-
fication gives an allowable stress of 14.5 kips/in? (99.9 MPa).

The maximum flexural stress is f'= Mc/l, = 2500(25.5)13138 = 20.3 < 27 kips/in®
(186.1 MPa). This is acceptable. The use of 15 rivets is therefore satisfactory.

S. Compute the stresses in the rivets on line 2

The center of rotation of the angles cannot be readily located because it depends on the
amount of initial tension to which the rivets are subjected. For a conservative approxima-
tion, assume that the center of rotation of the angles coincides with the horizontal cen-
troidal axis of the rivet group. The forces are F, = 2500/[2(146.3)] = 8.54 kips (37.9 kN);
F, = 40/30 = 1.33 kips (5.9 kN). The corresponding stresses in tension and shear are s, =
F,/4 = 8.54/0.6013 = 14.20 kips/in? (97.9 MPa); s, = F,/4 = 1.33/0.6013 = 2.21 kips/in’
(15.2 MPa). The Specification gives 5,10, = 28 — 1.6(2.21) > 20 kips/in® (137.9 kPa).
This is acceptable.

6. Select the size of the connection angles

The angles are designed by assuming a uniform bending stress across a distance equal to
the spacing p of the rivets; the maximum stress is found by applying the tensile force on
the extreme rivet.

Try 4 x 4 x % in (102 x 102 x 19 mm) angles, with a standard gage of 2! in (63.5
mm) in the outstanding legs. Assuming the point of contraflexure to have the location
specified in the previous calculation procedure, we get ¢ = 0.6(2.5 — 0.75) = 1.05 in (26.7
mm); M = 8.54(1.05) = 8.97 inkips (1.0 kN-m); = 8.97/[(Vs)(3)(0.75)*] = 31.9 > 27
kips/in? (186.1 MPa). Use 5 x 5 x % in (127 x 127 x 22 mm) angles, with a 2%-in (63.5-
mm) gage in the outstanding legs.

7. Determine the number of rivets required on line 3
The forces in the rivets above this line are shown in Fig 6a. The resultant forces are

\
4
I (89 mm)
17.09 kips (76.0 kNt 312"
14.96 (66.5) f267 cos F
N2 8 ‘—g(n.s kN) y
12.82(57 O)<—?
10.69 (47.6)4'—2
8.55(38 O)‘_ELA'— (b)
Top of beam @
2]

FIGURE 6
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H = 64.11 kips (285.2 kN); V = 13.35 kips (59.4 kN). Let M; denote the moment of H
with respect to line 3. Then a = %4(24 — 18.25) = 2.88 in (73.2 mm); M; = 633.3 in‘kips
(71.6 kN'm).

With reference to Fig. 6b, the tensile force F, in the rivet is usually limited by the
bending capacity of beam flange. As shown in the AISC Manual, the standard gage in the
W18 x 60 is 3% in (88.9 mm). Assume that the point of contraflexure in the beam flange
lies midway between the center of the rivet and the face of the web. Referring to Fig. 4b,
we have ¢ = ¥%(1.75 — 0.416/2) = 0.771 in (19.6 mm); M,ow = fS = 27(/6)(3)(0.695)* =
0.52 in'kips (0.74 kN'm). If the compressive force C is disregarded, F), ,pow = 6.52/0.771 =
8 46 kips (37 6 kN)

Try 16 rivets. The moment on the rivet group is M = 633.3 — 13.35(14.5) = 440 in°kips
(49.7 kN'm). By Eq. 3, S =2(3)(8)(9)/6 = 72 in (1829 mm). Also, F, =440/72 + 13.35/16
=6.94 < 8.46 kips (37.6 kN). This is acceptable. (The value of F), corresponding to 14 riv-
ets is excessive.)

The rivet stresses are s, = 6.94/0.6013 = 11.54 Kkips/in® (79.6 MPa); s, =
64.11/[16(0.6013)] = 6.67 kips/in? (45.9 MPa). From the Specification, s, 10, = 28 —
1.6(6.67) = 17.33 kips/in? (119.5 MPa). This is acceptable. The use of 16 rivets is there-
fore satisfactory.

8. Compute the stresses in the bracket at the toe of the fillet

(line 4)

Since these stresses are seldom critical, take the length of the bracket as 24 in (609.6 mm)
and disregard the eccentricity of V. Then M = 633.3 — 64.11(1.18) = 558 in-kips (63.1
KN-m), /= 558/[("/5)(0.416)(24)*] + 13.35/[0.416(24)] = 15.31 kips/in? (105.5 MPa). This
is acceptabie. Also, v = 1.5(64.11)/[0.416(24)] = 9.63 kips/in? (66.4 MPa) This is also ac-
ceptable.

DESIGN OF A WELDED FLEXIBLE
BEAM CONNECTION

A W18 x 64 beam is to be connected to the flange of its supporting column by means of a
welded framed connection, using E60 electrodes. Design a connection to transmit a reac-
tion of 40 kips (177.9 kN). The AISC table of welded connections may be applied in se-
lecting the connection, but the design must be verified by computing the stresses.

Calculation Procedure:

1. Record the pertinent properties of the beam

It is necessary to investigate both the stresses in the weld and the shearing stress in the
beam induced by the connection. The framing angles must fit between the fillets of the
beam. Record the properties: 7= 15% in (390.5 mm); ¢,, = 0.403 in (10.2 mm).

2. Select the most economical connection from the AISC Manual
The most economical connection is: angles 3 x 3 X %46 in (76 x 76 x 7.9 mm), 12 in (305
mm) long; weld size > %46 in (4.8 mm) for connection to beam web, % in (6.4 mm) for
connection to the supporting member.

According to the AISC table, weld 4 has a capacity of 40.3 kips (179.3 kN), and weld
B has a capacity of 42.8 kips (190.4 kN). The minimum web thickness required is 0.25 in
(6.4 mm). The connection is shown in Fig. 7a.
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3. Compute the unit force in the shop weld
The shop weld connects the angles to the beam web. Refer to Sec. 1 for two calculation
procedures for analyzing welded connections.

The weld for one angle is shown in Fig. 7b. The allowable force, as given in Sec. 1, is
m = 2(2.5)(1.25)/[2(2.5) + 12] = 0.37 in (9.4 mm); P = 20,000 1b (88.9 kN); M =20,000(3
—0.37) = 52,600 in'lb (5942.7 N-m); I, = (Vi2)(12)* + 2(2.5)(6)* = 324 in® (5309.4 cm?); [,
= 12(0.37)% + 2(V12)(2.5)® + 2(2.5)(0.88)? = 8 in® (131.1 cm?); J = 324 + 8 = 332 in¢3v
(5440.5 cm®); f, = MylJ = 52,600(6)/332 = 951 1b/lin in (166.5 N/mm); f, = Mx/J =
52,600(2.5)(0.37)/332 = 337 Ib/lin in (59.0 N/mm); £, = 20,000/(2 x 2.5 + 12) = 1176
Ib/lin in (205.9 N/mm); F, = 951 1b/lin in (166.5 N/mm); F, =337 + 1176 = 1513 Ib/lin in
(265.0 N/mm); F = (9512 + 1513%)%% = 1787 < 1800, which is acceptable.

4. Compute the shearing stress in the web

The allowable stress given in the AISC Manual is 14,500 Ib/in? (99.9 MPa). The two an-
gles transmit a unit shearing force of 3574 Ib/lin in (0.64 kN/mm) to the web. The shear-
ing stress is v = 3574/0.403 = 8870 Ib/in? (61.1 MPa), which is acceptable.

5. Compute the unit force in the field weld

The field weld connects the angles to the supporting member. As a result of the 3-in
(76.2-mm) eccentricity on the outstanding legs, the angles tend to rotate about a neutral
axis located near the top, bearing against the beam web above this axis and pulling away
from the web below this axis. Assume that the distance from the top of the angle to the
neutral axis is one-sixth of the length of the angle. The resultant forces are shown in Fig.
7c. Then a = (%6)12 = 10 in (254 mm); b = (33)12 = 8 in (203 mm); B = 20,000(3)/8 =
7500 1b (33.4 kN); f, = 2R/a = 1500 Ib/lin in (262.7 N/mm); £, = 20,000/12 = 1667 Ib/lin
in (291.9 N/mm); F (15002 + 16672)%° = 2240 < 2400 Ib/lin in (420.3 N/mm), which is
acceptable. The weld is returned a distance of (% in (12.7 mm) across the top of the angle,
as shown in the AISC Manual.

DESIGN OF A WELDED SEATED
BEAM CONNECTION

A W27 x 94 beam with a reaction of 77 kips (342.5 kN) is to be supported on a seat. De-
sign a welded connection, using E60 electrodes.

3" (76 mm)
/2" ﬁ y 20kips(889 kN)
(127 mm) || P BN (76 mm)
L qu R
- ¢
| o i
12 X
(305 mm) e I
-1
R
-—
m fx
(a) (b) (c)

FIGURE 7. Welded flexible beam connection.
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Calculation Procedure:

1. Record the relevant properties of the beam

Refer to the AISC Manual. The connection will consist of a horizontal seat plate and a
stiffener plate below the seat, as shown in Fig. 8a. Record the relevant properties of the
W27 x 94: k= 1.44 in (36.6 mm); b = 9.99 in (253.7 mm); ¢,= 0.747 in (19.0 mm); ¢, =
0.490 in (12.4 mm).

2. Compute the effective length of bearing

Equate the compressive stress at the toe of the fillet to its allowable value of 27 kips/in?
(186.1 MPa) as given in the AISC Manual. Assume that the reaction distributes itself
through the web at an angle of 45°. Refer to Fig. 86. Then N = P/27t,, — k, ot N =
77/27(0.490) — 1.44 = 438 in (111.3 mm).

3. Design the seat plate

As shown in the AISC Manual, the beam is set back about ¥ in (12.7 mm) from the face
of the support. Make # =5 in (127.0 mm). The minimum allowable distance from the
edge of the seat plate to the edge of the flange equals the weld size plus %6 in (7.8 mm).
Make the seat plate 12 in (304.8 mm) long; its thickness will be made the same as that of
the stiffener.

4. Design the weld connecting the stiffener plate to the support
The stresses in this weld are not amenable to precise analysis. The stiffener rotates about
a neutral axis, bearing against the support below this axis and pulling away from the sup-
port above this axis. Assume for simplicity that the neutral axis coincides with the cen-
troidal axis of the weld group; the maximum weld stress occurs at the top. A weld length
of 0.2L is supplied under the seat plate on each side of the stiffener. Refer to Fig. 8c.
Compute the distance e from the face of the support to the center of the bearing, meas-
uring N from the edge of the seat. Thus, e = W - N/2=5-4.38/2=2.81 in (71.4 mm); P
=77 kips (342.5 kN); M = 77(2.81) = 216.4 in‘kips (24.5 kN-m); m = 0.417L; I, = 0.25L3
fi = Mcll, = 216.4(0.417L)/0.25L% = 361.0/L? kips/lin in; f, = P/d = 77/2.4L = 32.08/L

oz2L

E L I NAL

27WF94 F
(W27x94) K w—— (c)
} 1 (127 mm)
5"
L P
N 1tk
+ W | (b)

(a)
FIGURE 8. Welded seated beam connection.
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kips/lin in. Use a %1s-in (7.9-mm) weld, which has a capacity of 3 kips/lin in (525.4
N/mm). Then F? = fZ + 2 = 130,300/L* + 1029/L? = 32, This equation is satisfied by L =
14 in (355.6 mm).

5. Determine the thickness of the stiffener plate
Assume this plate is triangular (Fig. 84). The critical section for bending is assumed to co-
incide with the throat of the plate, and the maximum bending stress may be obtained by
applying f= (P/tW sin? 6)(1 + 6¢'/W), where ¢’ = distance from center of seat to center of
bearing.

Using an allowable stress of 22,000 Ib/in? (151.7 MPa), we have e’ =¢~2.5=0.31 in
(7.9 mm), ¢ = {77/[22 x 5(14/14,87)*]}(1 + 6 x 0.31/5) = 1.08 in (27.4 mm).

Use a 1%-in (28.6-mm) stiffener plate. The shearing stress in the plate caused by the
weld is v = 2(3000)/1.125 = 5330 < 14,500 1b/in? (99.9 MPa), which is acceptable.

DESIGN OF A WELDED
MOMENT CONNECTION

A W16 x 40 beam frames to the flange of a W12 x 72 column and transmits a shear of 42
kips (186.8 kN) and a moment of 1520 in-kips (171.1 kN-m). Design a welded connec-
tion, using E60 electrodes.

Calculation Procedure:

1. Record the relevant properties of the two sections
In designing a welded moment connection, it is assumed for simplicity that the beam
flanges alone resist the bending moment. Consequently, the beam transmits three forces
to the column: the tensile force in the top flange, the compressive force in the bottom
flange, and the vertical load. Although the connection is designed ostensibly on an elastic
design basis, it is necessary to consider its
behavior at ultihate load, since a plastic
hinge would form at this joint. The con-
nection is shown in Fig. 9.

Record the relevant properties of the

. sections: for the W16 x 40, d = 16.00 in
iﬂ"’ war mm) (406.4 mm); b =7.00 in (177.8 mmY; ¢, =

0.503 in (12.8 mm); ¢, = 0.307 in (7.8

mm); A, = 7.00(0.503) = 3.52 in® (22.7

cm?). For the W12 x 72, k=1.25 in (31.8

mm); = 0.671 in (17.04 mm); ¢,, = 0.403
l )0520 inekips in (10.2 mm).

U7\.T&Nem) 2 Investigate the need for
?ezskie”m) column stiffeners: design the
{186 stiffeners if they are needed

The forces in the beam flanges introduce
two potential modes of failure: crippling
of the column web caused by the com-
pressive force, and fracture of the weld
transmitting the tensile force as a result of
FIGURE 9. Welded moment connection. the bending of the column flange. The

55° (1397 mm)




" HANGERS, CONNECTORS, AND WIND-STRESS ANALYSIS 1.179

AISC Specification establishes the criteria for ascertaining whether column stiffeners are
required. The first criterion is obtained by equating the compressive stress in the column
web at the toe of the fillet to the yield-point stress f); the second criterion was obtained
empirically. At the ultimate load, the capacity of the unreinforced web = (0.503 + 5 x
1.25)0.430f7, = 2.904f,; capacity of beam flange = 3.52f;; 0.4(4)°* = 0.4(3.52)** = 0.750
>0.671 in (17.04 mm).

Stiffeners are therefore required opposite both flanges of the beam. The required area
is A, = 3.52 ~ 2.904 = 0.616 in? (3.97 cm?). Make the stiffener plates 3%; in (88.9 mm)
wide to match the beam flange. From the AISC, #,;, = 3.5/8.5 = 0.41 in (10.4 mm). Use
two 3% X Y2 in (88.9 x 12.7 mm) stiffener plates opposite both beam flanges.

3. Design the connection plate for the top flange
Compute the flange force by applying the total depth of the beam. Thus, F = 1520/16.00 =
95 kips (422.6 kN); 4 = 95/22 = 4.32 in? (27.87 cm?).

Since the beam flange is 7 in (177.8 mm) wide, use a plate 5 in (127 mm) wide and %
in (22.2 mm) thick, for which 4 = 4.38 in® (28.26 cm?). This plate is butt-welded to the
column flange and fillet-welded to the beam flange. In accordance with the AISC Specifi-
cation, the minimum weld size is %16 in (7.94 mm) and the maximum size is %6 in (20.6
mm). Use a %-in (15.9-mm) weld, which has a capacity of 6000 1b/lin in (1051 N/mm).
Then, length of weld = 95/6 = 15.8 in (401.3 mm), say 16 in (406.4 mm). To ensure that
yielding of the joint at ultimate load will occur in the plate rather than in the weld, the top
plate is left unwelded for a distance approximately equal to its width, as shown in Fig. 9.

4. Design the seat

The connection plate for the bottom flange requires the same area and length of weld as
does the plate for the top flange The stiffener plate and its connecting weld are designed
in the same manner as in the previous calculation procedure.

RECTANGULAR KNEE OF RIGID BENT

Figure 10a is the elevation of the knee of a rigid bent. Design the knee to transmit an ulti-
mate moment of 8100 in-kips (914.5 kN-m).

b o
e b a P> F,
- ®.
W27 X 84 2. =
3 TR
@
4 ] S —
¢ ¢ ¢ < ¢ S
W18 X 105 ( ;""'
A f ¢

A

v (b}

(a)
FIGURE 10. Rectangular knee.
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Calculation Procedure:

1. Record the relevant properties of the two sections

Refer to the AISC Specification and Manual. It is assumed that the moment in each mem-
ber is resisted entirely by the flanges and that the distance between the resultant flange
forces is 0.95 times the depth of the member.

Record the properties of the members: for the W18 x 105, d = 18.32 in (465.3 mm); b,
=11.79 in (299.5 mm); ¢,= 0.911 in (23.1 mm); ¢, = 0.554 in (14.1 mm); &k = 1.625 in
(41.3 mm). For the W27 x 84, d =26.69 in (677.9 mm); b,= 9.96 in (253 mm); ¢,= 0.636
in (16.2 mm); ¢,, = 0.463 in (11.8 mm).

2. Compute F,
Thus, F; M,/(0.95d) = 8100/[0.95(18.32)] = 465 kips (2068.3 kN).

3. Determine whether web stiffeners are needed to transmit F,

The shearing stress is assumed to vary linearly from zero at a to its maximum value at d.
The allowable average shearing stress is taken as f,/(3)*%, where £, denotes the yield-point
stress. The capacity of the web = 0.554(26.69)(36/3%3) = 307 kips (1365.5 kN). There-
fore, use diagonal web stiffeners.

4. Design the web stiffeners

Referring to Fig. 10c, we see that ac = (18.3% + 26.7%)%5 = 32.4 in (823 mm). The force in
the stiffeners = (465 — 307)32.4/26.7 = 192 kips (854.0 kN). (The same result is obtained
by computing F, and considering the capacity of the web across ab.) Then, 4, = 192/36 =
5.33 in? (34.39 cm?). Use two plates 4 x % in (101.6 x 19.1 mm).

5. Design the welds, using E60 electrodes

The AISC Specification stipulates that the weld capacity at ultimate load is 1.67 times the
capacity at the working load. Consequently, the ultimate-load capacity is 1000 Ib/lin in
(175 N/mm) times the number of sixteenths in the weld size. The welds are generally de-
signed to develop the full moment capacity of each member. Refer to the AISC Specifica-
tion.

Weld at ab. This weld transmits the force in the flange of the 27-in (685.8-mm) mem-
ber to the web of the 18-in (457.2-mm) member. Then F = 9.96(0.636)(36) = 228 kips
(1014.1 kN), weld force = 228/[2(d — 2¢)] = 228/[2(18.32 — 1.82)] = 6.91 kips/lin in
(1210.1 N/mm). Use a “/16-in (11.1-mm) weld.

Weld at be. Use a full-penetration butt weld.

Weld at ac. Use the minimum size of % in (6.4 mm). The required total length of weld
is L=192/4=48 in (1219.2 mm).

Weld at dc. Let F; denote that part of F, that is transmitted to the web of the 18-in
(457.2-mm) member through bearing, and let F,, denote the remainder of F,. Force F; dis-
tributes itself through the 18-in (457.2-mm) member at 45° angles, and the maximum
compressive stress occurs at the toe of the fillet. Find F; by equating this stress to 36
kips/in? (248.2 MPa); or F3 = 36(0.554)(0.636 + 2 x 1.625) = 78 kips (346.9 kN). To eval-
uate F,, apply the moment capacity of the 27-in (685.8-mm) member. Or F, =228 — 78 =
150 kips (667.2 kN).

The minimum weld size of Y in (6.4 mm) is inadequate. Use a %1-in (7.9-mm) weld.
The required total length is L = 150/5 = 30 in (762.0 mm).

CURVED KNEE OF RIGID BENT

In Fig. 11 the rafter and column are both W21 x 82, and the ultimate moment at the two
sections of tangency—yp and g—is 6600 in'kips (745.7 kN'm). The section of contraflex-
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ure in each member lies 84 in (2133.6 mm) eSS
from the section of tangency. Design the
knee.

Calculation Procedure: 20T
1. Record the relevant
properties of the members
Refer to the Commentary in the AISC Man-
ual. The notational system is the same as
that used in the Manual, plus a = distance Radius =76"
from section of contraflexure to section of (19304 mm)
tangency; b = member flange width; x = P 'L“ (NTS)
distance from section of tangency to given i‘r
section; M = ultimate moment at given sec-
tion; M), = plastic-moment capacity of knee FIGURE 11. Curved knee.
at the given section.

Assume that the moment gradient
dM/dx remains constant across the knee.
The web thickness of the knee is made equal to that of the main material. The flange
thickness of the knee, however, must exceed that of the main material, for this reason: As
x increases, both M and M, increase, but the former increases at a faster rate when x is
small. The critical section occurs where dM/dx = dM,/dx.

An exact solution to this problem is possible, but the resulting equation is rather cum-
bersome. An approximate solution is given in the AISC Manual.

Record the relevant properties of the the W21 x 82: d =20.86 in (529.8 mm); b = 8.96
in (227.6 mm); ¢,= 0.795 in (20.2 mm); ¢,, = 0.499 in (12.7 mm).
2. Design the cross section of the knee, assuming tentatively that
flexure is the sole criterion
Use a trial thickness of %2 in (12.7 mm) for the web plate and a 9-in (228.6-mm) width for
the flange plate. Then a = 84 in (2133.6 mm); n = a/d = 84/20.86 = 4.03. From the AISC
Manual, m = 0.14 £ t' = (1 + m) = 0.795(1.14) = 0.906 in (23.0 mm). Make the flange
plate 1 in (25.4 mm) thick.

3. Design the stiffeners; investigate the knee for compliance with
the AISC Commentary

From the Commentary, item 5: Provide stiffener plates at the sections of tangency and at
the center of the knee. Make the stiffener plates 4 x % in (102 x 22 mm), one on each side
of the web.

Item 3: Thus, ¢ = ¥2(90° — 20°) = 35°; ¢ =35/57.3=0.611rad; L = R¢p=76(0.611) =
46.4 in (1178.6 mm); or L = wR(70°/360°) = 46.4 in (1178.6 mm); L., = 6b = 6(9) = 54 in
(1373 mm), which is acceptable.

Item 4: Thus, b/t' = 9; 2R/b=152/9 = 16.9, which is acceptable.

BASE PLATE FOR STEEL COLUMN
CARRYING AXIAL LOAD

A W14 x 53 column carries a load of 240 kips (1067.5 kN) and is supported by a footing
made of 3000-1b/in? (20,682-kPa) concrete. Design the column base plate.
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Calculation Procedure:

1. Compute the required area of the base plate; establish the plate
dimensions

Refer to the base-plate diagram in the AISC Manual. The column load is assumed to be
uniformly distributed within the indicated rectangle, and the footing reaction is assumed
to-he uniformly distributed across the base plate. The required thickness of the plate is es-
tablished by computing the bending moment at the circutnference of the indicated rectan-
gle. Let = maximum bending stress in plate; p = bearing stress; ¢ = thickness of plate.

The ACI Code permits a bearing stress of 750 lb/in? (5170.5 kPa) if the entire concrete
area is loaded and 1125 Ib/in? (7755.8 kPa) if one-third of this area is loaded. Applying
the 750-Ib/in? (5170.5-kPa) value, we get plate area = load, Ib/750 = 240,000/750 = 320
in? (2064.5 cm?).

The dimensions of the W14 x 53 are d = 13.94 in (354.3 mm); b= 8 06 in (204.7 mm);
0.95d = 13.24 in (335.3 mm); 0.80b = 6.45 in (163.8 mm). For economy, the projections
m and n should be approximately equal. Set B = 15 in (381 mm) and C = 22 in (558.8
mm); then, area = 15(22) = 330 in? (2129 cm?); p = 240,000/330 = 727 1b/in? (5011.9
kPa).

2. Compute the required thickness of the base plate
Thus, m = ¥%(22 — 13.24) = 4.38 in (111.3 mm), which governs. Also, n = 15(15 — 6.45) =
4.28 in (108.7 mm).

The AISC Specification permits a bending stress of 27,000 1b/in® (186.1 MPa) in a rec-
tangular plate. The maximum bending stress is = M/S = 3pm?/2; t = m(3p/f)*> = 4.38(3
x 727/27,000)°3 = 1.24 in (31.5 mm).

3. Summarize the design
Thus, B= 15 in (381 mm); C =22 in (558.8 mm); ¢ = 1% in (31.8 mm).

BASE FOR STEEL COLUMN
WITH END MOMENT

A steel column of 14-in (355.6-mm) depth transmits to its footing an axial load of 30 kips
(133.4 kN) and a moment of 1100 in-kips (124.3 kN'm) in the plane of its web. Design the
base, using A307 anchor bolts and 3000-1b/in? (20.7-MPa) concrete.

Calculation Procedure:

1. Record the allowable stresses and modular ratio

Refer to Fig. 12. If the moment is sufficiently large, it causes uplift at one end of the plate
and thereby induces tension in the anchor bolt at that end. A rigorous analysis of the
stresses in a column base transmitting a moment is not possible. For simplicity, compute
the stresses across a horizontal plane through the base plate by treating this as the cross
section of a reinforced-concrete beam, the anchor bolt on the tension side acting as the re-
inforcing steel. The effects of initial tension in the bolts are disregarded.

The anchor bolts are usually placed 2% (63.5 mm) or 3 in (76.2 mm) from the column
flange. Using a plate of 26-in (660-mm) depth as shown in Fig. 124, let 4, = anchor-bolt
cross-sectional area; B = base-plate width; C = resultant compressive force on base plate;
T = tensile force in anchor bolt; £, = stress in anchor bolt; p = maximum bearing stress;
p' = bearing stress at column face; ¢ = base-plate thickness.
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Recording the allowable stresses and modular ra- (76 mm) (76 mm) (76 mm) (76 mm)
tio by using the ACI Code, we get p = 750 Ib/in? 33" 14" 33"
(5170 kPa) and n = 9. From the AISC Specification, | (356 mm) |
J,= 14,000 Ib/in? (96.5 MPa); the allowable bending -
stress in the plate is 27,000 1b/in? (186.1 MPa).

2. Construct the stress

and force diagrams

These are shown in Fig. 13. Then f,/n = 14/9 = 1.555
kips/in® (10.7 MPa); kd = 23(0.750/2.305) = 7.48 in
(190.0 mm); jd = 23 — 7.48/3 = 20.51 in (521.0 mm).

3. Design the base plate ‘
I

26" (660 mm)

AN

=B

fs/n ~
~

Thus, C = 4(7.48)(0.7508) = 2.805B. Take mo-
ments with respect to the anchor bolt, or ZM = (a) Plan
30(10) + 1100 — 2.805B(20.51) = 0; B = 243 in
(617.2 mm). P

Assume that the critical bending stress in the M
base plate occurs at the face of the column. Compute ft\
the bending moment at the face for a 1-in (25.4-mm) ftn-ﬂl
width of plate. Referring to Fig. 13¢, we have p’ = ¥
0.750(1.48/7.48) = 0.148 kips/in? (1020.3 kPa); M = q L1
(6%/6)(0.148 + 2 x 0.750) = 9.89 in'kips (1.12 U
kN'm); £ — 6M/27 = 2.20 in® (14.19 cm?); ¢ = 1.48 in
(37.6 mm). Make the base plate 25 in (635 mm) (b) Elevation
wide and 1! in (38.1 mm) thick.
4. Design the anchor bolts
From the calculation in step 3, C = 2.805B =
2.805(24.3) = 68.2 kips (303.4 kN); T=68.2-30 = .
38.2 kips (169.9 kN); 4, = 38.2/14 — 2,73 in? (17.61 4
cm?). Refer to the AISC Manual. Use 2Y-in (57.2- () Stresses
mm) anchor bolts, one on each side of the flange.
Then 4, = 3.02 in? (19.48 cm?). FIGURE 12. Anchor-bolt de-
5. Design the anchorage for the bolts tails. (a) Plan; (b) elevation;
The bolts are held by angles welded to the column (c) stresses.
flange, as shown in Fig. 12 and in the AISC Manual.
Use Y2-in (12.7-mm) angles 12 in (304.8 mm) long.
Each line of weld resists a force of 12T. Refer to Fig.
13d and compute the unit force F at the extremity of
the weld. Thus, M = 19.1(3) = 57.3 in-kips (6.47 kKN‘m); S, = (/6)(12)? 24 in? (154.8 cm?);
F, = 57.3/24 = 2.39 kips/lin in (0.43 kN/mm); F, = 19.1/12 = 1.59 kips/lin in (0.29
kN/mm); F = (2.39% + 1.59%)%5 = 2.87 kips/lin in (0.52 kN/mm). Use a ¥i¢-in (4.8-mm)
fillet weld of E60 electrodes, which has a capacity of 3 kips/lin in (0.54 kN/mm).

GRILLAGE SUPPORT FOR COLUMN

A steel column in the form of a W14 x 320 reinforced with two 20 x 1% in (508 x 38.1
mm) cover plates carries a load of 2790 kips (12,410 kN). Design the grillage under this
column, using an allowable bearing stress of 750 Ib/in? (5170.5 kPa) on the concrete. The
space between the beams will be filled with concrete.
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. 10" 13" (330 mm) (190 =)
190 mm
l@mm) ¢ column kd * 748"
1.555 N kd (38 mm)|i 48" 6"
(10.7 MPa) \ (152 mm)
0750 =
(5.2 MPa) P P
d = 23" (584 mm) |
>
{a) Stresses (c) Stresses on projection
Y
T 30 kips (133.4 kN) 1
: . 19 kips
10O in » kips
(124.3 kN e m) (84.9kN) )
jd = 20.51" (521 mm)
¢ 3" |(76 mm)
(b) Forces and moment (d) Force on weld

FIGURE 13. (a) Stresses; (b) forces and moment; (¢) stresses on
projection; (d) force on weld.

Calculation Procedure:

1. Establish the dimensions of the grillage
Refer to Fig. 14. A load of this magnitude cannot be transmitted from the column to its
footing through the medium of a base plate alone. It is therefore necessary to interpose
steel beams between the base plate and the footing; these may be arranged in one tier or in
two orthogonal tiers. Integrity of each tier is achieved by tying the beams together by pipe
separators. This type of column support is termed a grillage. In designing the grillage, it
is assumed that bearing pressures are uniform across each surface under consideration.
The area of grillage required = load, kips/allowable stress, kips/in® = 2790/0.750 =
3720 in? (23,994 cm?). Set 4 = 60 in (1524 mm) and B = 62 in (1574.8 mm), giving an
area of 3720 in? (23,994 cm?), as required.

2. Design the upper-tier beams

There are three criteria: bending stress, shearing stress, and compressive stress in the web
at the toe of the fillet. The concrete between the beams supplies lateral restraint, and the
allowable bending stress is therefore 24 kips/in? (165.5 MPa).

Since the web stresses are important criteria, a grillage is generally constructed of S
shapes rather than wide-flange beams to take advantage of the thick webs of S shapes.
The design of the beams requires the concurrent determination of the length a of the base
plate. Let f = bending stress; f;, = compressive stress in web at fillet toe; v = shearing
stress, P = load carried by single beam; S = section modulus of single beam; & = distance
from outer surface of beam to toe of fillet; #,, = web thickness of beam; a, = length of
plate as governed by flexure; a, = length of plate as governed by compressive stress in
web.

Select a beam size on the basis of stresses fand f;, and then investigate v. The maxi-
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FIGURE 14. Grillage under column.

mum bending moment occurs at the center of the span; its value is M = P(4 — a)/8 = f5;
therefore, a, = 4 — 8fS/P.

At the toe of the fillet, the load P is distributed across a distance a + 2k. Then f, = P/(a
+ 2k)t,,; therefore, a, = P/fyt, — 2k. Try four beams; then P = 2790/4 = 697.5 kips (3102.5
kN); f= 24 kips/in? (165.5 MPa); f;, = 27 kips/in? (186.1 MPa). Upon substitution, the
foregoing equations reduce to a; = 60 — 0.2755; a, = 25.8/t,,— 2k.

Select the trial beam sizes shown in the accompanying table, and calculate the corre-
sponding values of a, and a,.

Size S, in? (cm?) t,, in (mm) k, in (mm) a;, in (nm) a,, in (mm)

S18 x 54.7 88.4(1448.6) 0460 (11.68)  1.375(34.93) 35.7(906.8) 53.3(1353.8)
S18x 70 101.9(1669.8)  0.711 (18.06)  1.375(34.93) 32.0(812.8) 33.6(853.4)
S20x 654  116.9(1915.7)  0.500(12.7) 1.563 (39.70)  27.9(708.7)  48.5(1231.9)
S20 x 75 126.3 (2069.7)  0.641 (16.28)  1.563(39.70) 25.3(642.6)  37.1 (942.3)

Try S18 x 70, with a = 34 in (863.6 mm). The flange width is 6.25 in (158.8 mm). The
maximum vertical shear occurs at the edge of the plate; its magnitude is ¥ = P(4 — a)(24)
= 697.5(60 — 34)/[2(60)] = 151.1 kips (672.1 kN); v = 151.1/[18(0.711)] = 11.8 < 14.5
kips/in? (99.9 MPa), which is acceptable.

3. Design the base plate

Refer to the second previous calculation procedure. To permit the deposition of concrete,
allow a minimum space of 2 in (50.8 mm) between the beam flanges. The minimum value
of b is therefore b = 4(6.25) + 3(2) = 31 in (787.4 mm).

The dimensions of the effective bearing area under the column are 0.95(16.81 + 2 x
15) = 18.82 in (478.0 mm); 0.80(20) = 16 in (406.4 mm). The projection of the plate are
(34 - 18.82)/2=7.59 in (192.8 mm); (31 — 16)/2 ="7.5 in (190.5 mm).

Therefore, keep & =31 in (787 mm), because this results in a well-proportioned plate.
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The pressure under the plate = 2790/[34(31)] = 2.65 kips/in® (18.3 MPa). For a 1-in (25.4-
mm) width of plate, M = ¥%4(2.65)/(7.59)? = 76.33 in-kips (8.6 kN-m); § = M/f=76.33/27
=2.827 in3 (46.33 cm’; ¢ = (65)*° = 4.12 in (104.6 mm).

Plate thicknesses within this range vary by s-in (3.2-mm) increments, as stated in the
AISC Manual. However, a section of the AISC Specification requires that plates over 4 in
(102 mm) thick be planed at all bearing surfaces. Set ¢ = 4! in (114.3 mm) to allow for
the planing.

4. Design the beams at the lower tier
Try seven beams. Thus, P = 2790/7 = 398.6 kips (1772.9 kN); M = 398.6(62 — 31)/8 =
1545 in'kips (174.6 kN'm); S5 = 1545/24 = 64.4 in® (1055.3 cm®).

Try S15 x 50. Then § = 64.2 in? (1052.1 cm?); ¢,, = 0.550 in (14.0 mm); k= 1.25 in
(31.8 mm); b=5.64 in (143.3 mm). The space between flanges is [60 — 7 X 5.641/6 =3.42
in (86.9 mm). This result is satisfactory. Then f, = 398.6/[0.550(31 + 2 x 1.25)] =21.6 <
27 kips/in? (186.1 MPa), which is satisfactory; ¥ = 398.6(62 — 31)/[2(62)] = 99.7 kips
(443.5 kN); v =99.7/[15(0.550)] = 12.1 < 14.5, which is satisfactory.

5. Summarize the design

Thus: 4 =60 in (1524 mm); B = 62 in (1574.8 mm); base plate is 31 x 34 x 41/2 in (787.4
x 863.6 x 114.3 mm), upper-tier steel, four beams S18 x 70; lower-tier steel, seven beams
15150.0.

WIND-STRESS ANALYSIS
BY PORTAL METHOD

The bent in Fig. 15 resists the indicated wind loads. Applying the portal method of analy-
sis, calculate all shears, end moments, and axial forces.

Calculation Procedure:

1. Compute the shear factor for each column

The portal method is an approximate and relatively simple method of wind-stress analysis
that is frequently applied to regular bents of moderate height. It considers the bent to be
composed of a group of individual portals and makes the following assumptions. (1) The
wind load is distributed among the aisles of the bent in direct proportion to their relative
widths. (2) The point of contraflexure in each member lies at its center.

Because of the first assumption, the shear in a given column is directly proportional to
the average width of the adjacent aisles. (An alternative form of the portal method as-
sumes that the wind load is distributed uniformly among the aisles, irrespective of their
relative widths.)

In this analysis, we consider the end moments of a member, i.e., the moments exerted
at the ends of the member by the joints. The sign conventions used are as follows. An end
moment is positive if it is clockwise. The shear is positive if the lateral forces exerted on
the member by the joints constitute a couple having a counterclockwise moment. An axi-
al force is positive if it is tensile.

Figure 16a and b represents a beam and column, respectively, having positive end mo-
ments and positive shear. By applying the second assumption, M, = M, =M, Eq. a; V=
2MIL, or M = VL/2,Eq. b; H=2M/L, or M = HL/2, Eq. c. In Fig. 15, the calculated data
for each member are recorded in the order indicated.
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M, The shear factor equals the ratio of
o the average width of the adjacent aisles
to the total width. Or, line 4, 15/75 =
A 0.20; line B, (15 + 12)/75 = 0.36; line C,
M.C B)M, (12 + 10.5)/75 = 0.30; line D, 10.5/75 =
J I 0.14. For convenience, record these val-
v v 8 ues in Fig. 15.
(@ N 2. Compute the shear

My in each column
(b) For instance, column A4-2-3, H =
—3900(0.20) = —-780 Ib (3.5 kN); col-
FIGURE 16 umn C-1-2, H = —(3900 + 7500)0.30 =

~3420 Ib (-15.2 kN).

3. Compute the end moments
of each column

Apply Eq. c. For instance, column 4-2-3, M = 12(-780)15 =-5850 fi-1b (-7932.6 N-m); column
D-0-1, M ="2(-2751)18 = -24,759 ft-Ib (-33,573.2 N-m).
4. Compute the end moments of each beam
Do this by equating the algebraic sum of end moments at each joint to zero. For instance,
at line 3: Mz = 5850 ft-lb (7932.6 N'm); Mp- = —5850 + 10,530 = 4680 fi-1b (6346.1
N-m); Mop=-4680 + 8775 = 4095 ft-1b (5552.8 N-m). At line 2: M, = 5850 + 17,100 =
22,950 ft-Ib (31,120.2 N-m); Mg = -22,950 + 30,780 + 10,530 = 18,360 ft-Ib (24,896.0
N-m).
5. Compute the shear in each beam
Do this by applying Eq. b. For instance, beam B-2-C, V = 2(18,360)724 = 1530 1b (6.8
kN). .
6. Compute the axial force in each member
Do this by drawing free-body diagrams of the joints and applying the equations of equi-
librium. It is found that the axial forces in the interior columns are zero. This condition
stems from the first assumption underlying the portal method and the fact that each interi-
or column functions as both the leeward column of one portal and the windward column
of the adjacent portal.

The absence of axial forces in the interior columns in turn results in the equality of the
shear in the beams at each tier. Thus, the calculations associated with the portal method of
analysis are completely self-checking.

WIND-STRESS ANALYSIS
BY CANTILEVER METHOD

For the bent in Fig. 17, calculate all shears, end moments, and axial forces induced by the
wind loads by applying the cantilever method of wind-stress analysis. For this purpose,
assume that the columns have equal cross-sectional areas.

Calculation Procedure:

1. Compute the shear and moment on the bent at midheight
of each horizontal row of columns
The cantilever method, which is somewhat more rational than the portal method,
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considers that the bent behaves as a vertical cantilever. Consequently, the direct stress ina
column is directly proportional to the distance from the column to the centroid of the
combined column area. As in the portal method, the assumption is made that the point of
contraflexure in each member lies at its center. Refer to the previous calculation proce-
dure for the sign convention.

Computing the shear and moment on the bent at midheight, we have the following.
Upper row: H=3900 1b (17.3 kN); M = 3900(7.5) = 29,250 ft-Ib (39,663.0 N-m). Center
row: H=3900 + 7500 = 11,400 Ib (50.7 kN); M = 3900(22.5) + 7500(7.5) 144,000 ft-Ib
(195.3 kN'm). Lower row: H = 11,400 + 8250 = 19,650 Ib (87.5 kN); M = 3900(39) +
7500(24) + 8250(9) = 406,400 ft-lb (551.1 kN-m), or M = 144,000 + 11,400(16.5) +
8250(9) = 406,400 ft-1b (551.1 kN-m), as before. '

2. Locate the centroidal axis of the combined column area,

and compute the moment of inertia of the area with respect

to this axis

Take the area of one column as a unit. Then x = (30 + 54 + 75)/4 =39.75 ft (12.12 m); I =
39.75% + 9.75% + 14.25% + 35,252 = 3121 £i? (289.95 m?).

3. Compute the axial force in each column
Use the equation f= My/I. The y/I values are

A B C D
y 39.75 9.75 -14.25 -35.25
v 0.01274 0.00312 —0.00457 —0.01129

Then column 4-2-3, P = 29,250(0.01274) = 373 kips (1659 kN); column B-0-1, P =
406,400(0.00312) = 1268 kips (5640 kN).

4. Compute the shear in each beam by analyzing each joint

as a free body

Thus, beam 4-3-B, ¥ =373 1b (1659 N); beam B-3-C, V' =373 + 91 = 464 1b (2.1 kN);
beam C-3-D, V = 464 — 134 = 330 Ib (1468 N); beam 4-2-B, V' = 1835 - 373 = 1462 Ib
(6.5 kN); beam B-2-C, V' = 1462 + 449 - 91 = 1820 1b (8.1 kN).

5. Compute the end moments of each beam
Apply Eq. b of the previous calculation procedure. Or for beam A-3-B, M = 14(373)(30) =
5595 fi-lb (7586.8 N'm).

6. Compute the end moments of each column
Do this by equating the algebraic sum of the end moments at each joint to zero.

7. Compute the shear in each column

Apply Eq. ¢ of the previous calculation procedure. The sum of the shears in each horizon-
tal row of columns should equal the wind load above that plane. For instance, for the cen-
ter row, 2H = —(2178 + 4348 + 3522 + 1352) = -11,400 1b (—50.7 kN), which is correct.

8. Compute the axial force in each beam by analyzing each joint
as a free body

Thus, beam 4-3-B, P =-3900 + 746 = 3154 1b (—14.0 kN); beam B-3-C, P =-3154
+ 1488 = -1666 1b (7.4 kN).
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WIND-STRESS ANALYSIS BY
SLOPE-DEFLECTION METHOD

Analyze the bent in Fig. 18a by the slope-deflection method. The moment of inertia of
each member is shown in the drawing.

Calculation Procedure:

1. Compute the end rotations caused by the applied moments
and forces; superpose the rotation caused by the transverse
displacement
This method of analysis has not been applied extensively in the past because the arith-
metic calculations involved become voluminous where the bent contains many joints.
However, the increasing use of computers in structural design is overcoming this obstacle
and stimulating a renewed interest in the method.

Figure 19 is the elastic curve of a member subjected to moments and transverse forces
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applied solely at its ends. The sign convention is as follows: an end moment is positive if
it is clockwise; an angular displacement is positive if the rotation is clockwise; the trans-
verse displacement A is positive if it rotates the member in a clockwise direction.

Computing the end rotations gives 6, = (L/6E)(2M,, — M) + A/L; 8, = (LIGED)(-M, +
2M,) + A/L. These results may be obtained by applying the moment-area method or unit-
load method given in Sec. 1.

2. Solve the foregoing equations for the end moments
Thus,

2EI 3A 2EI 3A
Ma:(T) (20a+ Ob—T> Mb:(T) (0a+20b—T) “4)

These are the basic slope-deflection equations.

3. Compute the value of I/L for each member of the bent

Let K denote this value, which represents the relative stiffness of the member. Thus K, =
100/20 = 5; K_; = 144/24 = 6; K, = 300/30 = 10; K, = 60/15 = 4. These values are
recorded in circles in Fig. 18.

4. Apply Eq. 4 to each joint in turn

When the wind load is applied, the bent will deform until the horizontal reactions at the
supports total 10 kips (44.5 kN). It is evident, therefore, that the end moments of a mem-
ber are functions of the relative rather than the absolute stiffness of that member. There-
fore, in writing the moment equations, the coefficient 2EJ/L may be replaced with J/L; to
view this in another manner, E = %.

Disregard the deformation associated with axial forces in the members, and assume
that joints B and C remain in a horizontal line. The symbol M,, denotes the moment ex-
erted on member AB at joint 4. Thus M, = 5(6, — 3A/20) = 56, — 0.754; M, =
6(0,—3A24) =66, — 0.75A; M,. = 4(0,+ 3A/15) = 46, + 0.80A; M,, = 5(26, — 3A/20) =
106, — 0.75A; M, = 6(26, - 3A/24) = 126, - 0.75A; M, = 426, + 3A/15) = 86, + 0.80A;
M_;=10026, + 6,) =200, + 100,; M_, = 10(6, + 26,) = 106, + 208.,.

5. Write the equations of equilibrium for the joints

and for the bent

Thus, joint B, M,, + M,. =0, Eq. @; joint C, M, + M_; + M,, = 0, Eq. b. Let H denote the
horizontal reaction at a given support. Consider a horizontal force positive if directed to-
ward the right. Then H,, + H;+ H,+ 10=0, Eq. c.

6. Express the horizontal reactions in terms of the end moments
Rewrite Eq. ¢. Or, (M, + M;,)/20 + (M. + M, )/24 — (M, + M_)/15 + 10 = 0, or 6M_,, +
6M,, +5M,. + 5M,,— 8M,.— 8M,,=—1200, Eq. ¢'.

7. Rewrite Eqs. a, b, and ¢’ by replacing the end moments

with the expressions obtained in step 4

Thus, 306, + 106, — 0.75A = 0, Eq. 4; 106, + 406, + 0.05A = 0, Eq. B; 906, — 66, -
29.30A =-1200, Eq. C.

8. Solve the simultaneous equations in step 7 to obtain the
relative values of 6,, 6., and A
Thus 6, = 1.244; 6.=-0.367; A = 44.85.

9. Apply the results in step 8 to evaluate the end moments
The values, in foot-kips, are: M,, = -27.42 (-37.18 kN'm); M, = -35.84 (—48.6 kN'm);
M, = 34.41 (46.66 kKN'm); M,, = -21.20 (-28.75 kN'-m); M_, = —38.04 (—51.58 kN-m);
M, =32.94 (44.67 KN'-m); M, = 21.21 (28.76 kN'm); M, = 5.10 (6.92 kN'm).
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10. Compute the shear in each member by analyzing the member
as a free body

The shear is positive if the transverse forces exert a counterclockwise moment. Thus H,,
= (M, + M,,)/20 = -2.43 kips (-10.8 kN); H_; = -3.08 kips (-13.7 kN); H,, = 4.49 kips
(19.9 kN); V. = 0.88 kip (3.9 kN).

11. Compute the axial force in AB and BC

Thus P, = 0.88 kip (3.91 kN); P,. = -7.57 kips (—33.7 kN). The axial forces in EC and
CD are found by equating the elongation of one to the contraction of the other.

12. Check the bent for equilibrium
The forces and moments acting on the structure are shown in Fig. 185. The three equa-
tions of equilibrium are satisfied.

WIND DRIFT OF A BUILDING

Figure 204q is the partial elevation of the steel framing of a skyscraper. The wind shear di-
rectly above line 11 is 40 kips (177.9 kN), and the wind force applied at lines 11 and 12 is
4 kips (17.8 kN) each. The members represented by solid lines have the moments of iner-
tia shown in Table 1, and the structure is to be analyzed for wind stress by the portal
method. Compute the wind drift for the bent bounded by lines 11 and 12; that is, find the
horizontal displacement of the joints on line 11 relative to those on line 12 as a result of
wind.
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TABLE 1 Calculation of Wind Drift

Member I, in* (cm*) L ft(in) M, fi-kips (kN'-m) m,, fi-kips (kN-m) Mm L/l
A-11-12 1,500 (62,430) 12 (3.66) 462 (62.6) 105 (142) 039
B-11-12 1,460 (60,765) 12 (3.66) 72,6 (98.5) 1.65 (2.24) 0.98
C-11-12 1,800 (74,916) 12 (3.66)  85.8 (116.3) 195 (2.64) 112
D-11-12 2,000 (83,240) 12 (3.66) 59.4 (80.6) 1.35 (1.83) 0.48
A4-12-B 660 (27,469) 245 (747) 882 (119.6) 105 (142) 344
B-12-C 300 (12,486) 14 (427) 504 (683) 060 (0.81) 141
C-12-D 1,400 (58,268) 315 (9.60)  113.4 (153.8) 135 (1.83) 344
A-12-B 750 (31,213) 245 (7.47) 96.6 (130.9) 1.05 (1.42) 331
B-12-C 400 (16,648) 14 (427) 552 (749) 060 (0.81) 116
C-12-D 1,500 (62,430) 31.5 (9.60) 1242 (168.4) 135 (1.83) 352
Total 19.25

Calculation Procedure:

1. Using the portal method of wind-stress analysis, compute
the shear in each column caused by the unit loads
Apply the unit-load method presented in Sec. 1. For this purpose, consider that unit hori-
zontal loads are applied to the structure in the manner shown in Fig. 205.

The results obtained in steps 1, 2, and 3 below are recorded in Fig. 205. To apply the
portal method of wind-stress analysis, see the fourteenth calculation procedure in this sec-
tion.

2. Compute the end moments of each column caused
by the unit loads

3. Equate the algebraic sum of end moments at each joint
to zero; from this find the end moments of the beams caused
by the unit loads

4. Find the end moments of each column

Multiply the results obtained in step 2 by the wind shear in each panel to find the end mo-
ments of each column in Fig. 20a. For instance, the end moments of column C-11-12 are
—1.95(44) = -85.8 ft-kips (-116.3 kN'm). Record the result in Fig. 20a.

5. Find the end moments of the beams caused by the true loads
Equate the algebraic sum of end moments at each joint to zero to find the end moments of
the beams caused by the true loads.

6. State the equation for wind drift

In Fig. 21, M, and m, denote the end moments caused by the true load and unit load, re-
spectively. Then the

IMmL

Wind drift A = 3E

®)

7. Compute the wind drift by completing Table 1
In recording end moments, algebraic signs may be disregarded because the product
M_m, is always positive. Taking the total of the last column in Table 1, we find
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FIGURE 21. Bending-moment diagrams.

A = 19.25(12)*/[3(29)(10)%] = 0.382 in (9.7 mm). For dimensional homogeneity, the left
side of Eq. 5 must be multiplied by 1 kip (4.45 kN). The product represents the external
work performed by the unit loads.

REDUCTION IN WIND DRIFT BY USING
DIAGONAL BRACING

With reference to the previous calculation procedure, assume that the wind drift of the
bent is to be restricted to 0.20 in (5.1 mm) by introducing diagonal bracing between lines
B and C. Design the bracing, using the gross area of the member.

Calculation Procedure:

1. State the change in length of the brace

The bent will be reinforced against lateral deflection by a pair of diagonal cross braces,
each brace being assumed to act solely as a tension member. Select the lightest single-
angle member that will satisfy the stiffness requirements; then compute the wind drift of
the reinforced bent.

Assume that the bent in Fig. 22 is deformed in such a manner that B is displaced a hor-
izontal distance 4 relative to D. Let 4 = cross-sectional area of member CB; P = axial
force in CB; P,= horizontal component of P; 6L = change in length of CB. From the
geometry of Fig. 22, 6L = A cos 6§ = aA/L ap-
proximately.

2. Express P, in terms of A A
Thus, P = adEA/L?; P, = P cos 6 = PalL; A B l
then 7

[ A
P, CAEL ©® 2N

3. Select a trial size for the 8
diagonal bracing; compute the c D
tensile capacity L a

A section of the AISC Specification limits the

slenderness ratio for bracing members in ten-  FIGURE 22
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sion to 300, and another section provides an allowable stress of 22 kips/in? (151.7 MPa).
Thus, L? = 14? + 122 = 340 fi? (31.6 in?); L = 18.4 ft (5.61 m); r,;, = (18.4 x 12)/300 =
0.74 in (18.8 mm).

Trya4 x4 x Y%in (101.6 x 101.6 x 6.35 mm) angle; » = 0.79 in (20.1 mm); 4 = 1.94
in? (12.52 cm?); P, = 1.94(22) = 42.7 kips (189.9 kN).

4. Compute the wind drift if the assumed size of bracing is used
By Eq. 6, P, = {196/[(340))18.4)(12)}) 1.94(29)(10)°A = 147A kips (653.9A N). The wind
shear resisted by the columns of the bent is reduced by P, and the wind drift is reduced
proportionately.

From the previous calculation procedure, the following values are obtained: without
diagonal bracing, A = 0.382 in (9.7 mm); with diagonal bracing, A = 0.382/(44 — P,)/44 =
0.382 — 1.28A. Solving gives A = 0.168 < 0.20 in (5.1 mm), which is acceptable.

5. Check the axial force in the brace

Thus, P, = 147(0.168) = 24.7 kips (109.9 kN); P = P,L/a = 24.7(18.4)/14 = 32.5 < 42.7
kips (189.9 kN), which is satisfactory. Therefore, the assumed size of the member is satis-
factory.

LIGHT-GAGE STEEL BEAM WITH
UNSTIFFENED FLANGE

A beam of light-gage cold-formed steel consists of two 7 x 1%2 in (177.8 x 38.1 mm) by
no. 12 gage channels connected back to back to form an I section. The beam is simply
supported on a 16-ft (4.88-m) span, has continuous lateral support, and carries a total dead
load of 50 Ib/lin ft (730 N/m). The live-load deflection is restricted to 1/360 of the span. If
the yield-point stress £, is 33,000 1b/in? (227.5 MPa), compute the allowable unit live load
for this member.

Calculation Procedure:

1. Record the relevant properties of the section

Apply the AISI Specification for the Design of Light Gage Cold-Formed Steel Structural
Members. This is given in the AISI publication Light Gage Cold-Formed Steel Design
Manual. Use the same notational system, except denote the flat width of an element by g
rather than w.

The publication mentioned above provides a basic design stress of 20,000 Ib/in?
(137.9 MPa) for this grade of steel. However, since the compression flange of the given
member is unstiffened in accordance with the definition in one section of the publication,
it may be necessary to reduce the allowable compressive stress. A table in the Manual
gives the dimensions, design properties, and allowable stress of each section, but the al-
lowable stress will be computed independently in this calculation procedure.

Let V= maximum vertical shear; M = maximum bending moment; w = unit load; f; =
basic design stress; f, = allowable bending stress in compression; v = shearing stress; A =
maximum deflection.

Record the relevant properties of the section as shown in Fig. 23: I, = 12.4 in* (516.1
cm?); S, = 3.54 in? (58.0 cm®); R = %16 in (4.8 mm).

2. Compute f,
Thus, g = B/2 — t — R = 1.1935 in (30.3 mm); g/t = 1.1935/0.105 = 11.4. From the
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Manual, the allowable stress corresponding B=2972" (755mm)
to this ratio is f, = 1.667f, — 8640 — 1(f, — y
12,950)g/t)/15 = 1.667(20,000) — 8640 —~ (20,000 0
—12,950)11.4/15 = 19,340 1b/in? (133.3 MPa). ]

3. Compute the allowable unit live ==

load if flexure is the sole criterion

Thus M = £.5, = 19,340(3.54)/12 = 5700 ft-Ib

(7729.2 N'm); w = 8M/L? = §(5700)/16 = 178

Ib/lin ft (2.6 kN/m); wy; = 178 — 50 = 128 1b/lin D=70"
ft (1.87 kKN/m). (177.8 mm)

4. Investigate the deflection under
the computed live load
Using E = 29,500,000 1b/in? (203,373 MPa) as

given in the AISI Manual, we have A = -
Sw LY(384EL) = 5(128)(16)*(12)°/[384(29.5) )
(10)12.4] = 0.516 in (13.1 mm); Apy pow = FIGURE 23
16(12)/360 = 0.533 in (13.5 mm), which is satis-

factory.

5. Investigate the shearing stress

under the computed total load

Refer to the AISI Specification. For the individual channel, » = D - 2t = 6.79 in (172.5
mm); h/t = 64.7; 64,000,000/64.72 > %f,; therefore, V0w = 13,330 Ib/in? (91.9 MPa); the
web area = 0.105(6.79) = 0.713 in® (4.6 cm?); ¥V = %(178)16 = 712 1b (3.2 kN); v =
712/0.713 < w04, Which is satisfactory. The allowable unit live load is therefore 128
1b/lin ft (1.87 kN/m).

LIGHT-GAGE STEEL BEAM WITH STIFFENED
COMPRESSION FLANGE

A beam of light-gage cold-formed steel has a hat cross section 8 x 12 in (203.2 x 304.8
mm) of no. 12 gage, as shown in Fig. 24. The beam is simply supported on a span of 13 ft

B=120"
(3048 mm)
a— . A—
| | 1
Yy
CA.
Deg" (o)
(203.2 mm) "
I t=0i05 Yy
L (2.7 mm)
= 1
I_ B, = 14.47" l
' (3675 mm) '

(a)
FIGURE 24
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(3.96 m). If the yield-point stress is 33,000 Ib/in? (227.5 MPa), compute the allowable
unit load for this member and the corresponding deflection.

Calculation Procedure:

1. Record the relevant properties of the entire cross-sectional area
Refer to the AISI Specification and Manual. The allowable load is considered to be the
ultimate load that the member will carry divided by a load factor of 1.65. At ultimate
load, the bending stress varies considerably across the compression flange. To surmount
the difficulty that this condition introduces, the AISI Specification permits the designer to
assume that the stress is uniform across an effective flange width to be established in the
prescribed manner. The investigation is complicated by the fact that the effective flange
width and the bending stress in compression are interdependent quantities, for the follow-
ing reason. The effective width depends on the compressive stress; the compressive
stress, which is less than the basic design stress, depends on the location of the neutral
axis; the location of the neutral axis, in turn, depends on the effective width.

The beam deflection is also calculated by establishing an effective flange width. How-
ever, since the beam capacity is governed by stresses at the ultimate load and the beam
deflection is governed by stresses at working load, the effective widths associated with
these two quantities are unequal.

A table in the AISI Manual contains two design values that afford a direct solution to
this problem. However, the values are computed independently here to demonstrate how
they are obtained. The notational system presented in the previous calculation procedure
is used, as well as A’ = area of cross section exclusive of compression flange; H = static
moment of cross-sectional area with respect to top of section; y, and y, = distance from
centroidal axis of cross section to bottom and top of section, respectively.

We use the AISI Manual to determine the relevant properties of the entire cross-sec-
tional area, as shown in Fig. 24: 4 = 3.13 in? (20.2 cm?); y, = 5.23 in (132.8 mm); [, =
26.8 in* (1115.5 cm*); R = %6 in (4.8 mm).

2. Establish the value of f. for load determination

Use the relation (80402/£°5){ 1 — 2010/[( £93g)/1]} = (HID)(f, + f;)If, — A'. Substituting
gives g= B —2(t + R) = 12.0 — 2(0.105 + 0.1875) = 11.415 in (289.9 mm); g/t = 108.7; gt
=1.20 in? (7.74 cm?); A = 3.13 - 1.20 = 1.93 in? (12.45 cm?); y, = 8.0 — 5.23 =2.77 in
(70.36 cm); H = 3.13(2.77) = 8.670 in> (142.1 cm?). The foregoing equation then reduces
to (88.64/125)(1 — 18.49/f25) = 1.084(£. + 20,000)/f, — 1.93. By successive approxima-
tions, £, = 14,300 Ib/in? (102.0 MPa).

3. Compute the corresponding effective flange width for load
determination in accordance with the AISI Manual

Thus, b = (8040¢/f2%)1 - 2010/[(f2-5g)/¢]} = (8040 x 0.105/14,800°%)[1 — 2010/(14,800°5
x 108.7)] = 5.885 in (149.5 mm).

4. Locate the centroidal axis of the cross section having this
effective width; check the value of f,

Refer to Fig. 24b. Thus A =g — b= 11.415 — 5.885 = 5.530 in (140.5 mm); A¢ = 0.581 in?
(3.75 cm?); 4 = 3.13 - 0.581 = 2.549 in? (16.45 cm?); H = 8.670 in® (142.1 cm?®); y, =
8.670/ 2.549 = 3.40 in (86.4 mm); y, = 4.60 in (116.8 mm); £ = y,/y, = 3.40(20,000)/4.60
= 14,800 Ib/in? (102.0 MPa), which is satisfactory.

5. Compute the allowable load
The moment of inertia of the net section may be found by applying the value of the gross
section and making the necessary corrections. Applying S, = I,/y,, we get I, = 26.8 +
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3.13(3.40 - 2.77)?> - 0.581(3.40 — 0.053)? = 21.53 in* (896.15 cm*). Then S, = 21.53/4.60
=4.68 in® (76.69 cm?). This value agrees with that recorded in the AISI Manual.

Then M = £,S, = 20,000(4.68)/12 = 7800 ft-1b (10,576 N-m); w = 8M/L* = 8(7800)/13>
=369 Ib/lin ft (5.39 kN/m).
6. Establish the value of f, for deflection determination
Apply (10,3202/£95)[1 — 2580/( f° g/t)] = (HIDX(f.+ f)lf. — A", or (113.8/£%%) x (1 -
23.74/125) = 1.084( £, + 20,000)/f. — 1.93. By successive approximation, £, = 13,300 1b/in?
(91.7 MPa).

7. Compute the corresponding effective flange width for
deflection determination

Thus, b = (10,320¢//25)[1 ~ 2580/(f%%g/f)] = (10,320 x 0.105/13,300%3)[1 ~ 2580/
(13,300%5 x 108.7)] = 7.462 in (189.5 mm).

8. Locate the centroidal axis of the cross section having this
effective width; check the value of f,

Thus » = 11.415 — 7.462 = 3.953 in (100.4 mm); At = 0.415 in? (2.68 cm?); 4 = 313 —
0.415=2.715 in? (17.52 cm?); H= 8.670 in® (142.1 cm?); y, = 8.670/2.715=3.19 in (81.0
mm); y, = 4.81 in (122.2 mm); £, = (3.19/4.81)20,000 = 13,300 1b/in? (91.7 MPa), which
is satisfactory.

9. Compute the deflection

For the net section, 7, = 26.8 + 3.13(3.19 — 2.77)> - 0.415(3.19 - 0.053)? = 23.3 in* (969.8
cm*). This value agrees with that tabulated in the AISI Manual. The deflection is A =
SwL*(384EL) = 5(369)(13)*(12)*/[384(29.5)(10)523.3] = 0.345 in (8.8 mm).
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REINFORCED CONCRETE 2.3

PART 1
REINFORCED CONCRETE

The design of reinforced-concrete members in this handbook is executed in accordance
with the specification titled Building Code Requirements for Reinforced Concrete of the
American Concrete Institute (ACI). The ACI Reinforced Concrete Design Handbook
contains many useful tables that expedite design work. The designer should become thor-
oughly familiar with this handbook and use the tables it contains whenever possible.

The spacing of steel reinforcing bars in a concrete member is subject to the restrictions
imposed by the ACI Code. With reference to the beam and slab shown in Fig. 1, the rein-
forcing steel is assumed, for simplicity, to be concentrated at its centroidal axis, and the
effective depth of the flexural member is taken as the distance from the extreme compres-
sion fiber to this axis. (The term depth hereafter refers to the effective rather than the over-
all depth of the beam.) For design purposes, it is usually assumed that the distance from
the exterior surface to the center of the first row of steel bars is 2% in (63.5 mm) in a beam
with web stirrups, 2 in (50.8 mm) in a beam without stirrups, and 1 in (25.4 mm) in a slab.
Where two rows of steel bars are provided, it is usually assumed that the distance from
the exterior surface to the centroidal axis of the reinforcement is 3% in (88.9 mm). The
ACI Handbook gives the minimum beam widths needed to accommodate various combi-
nations of bars in one row.

In a well-proportioned beam, the width-depth ratio lies between 0.5 and 0.75. The
width and overall depth are usually an even number of inches.

The basic notational system pertaining to reinforced concrete beams is as follows:
/.= ultimate compressive strength of concrete, Ib/in? (kPa); f, = maximum compressive

stress in concrete, 1b/in? (kPa); f, = tensile

stress in steel, 1b/in? (kPa); Jf, = yield-point
b stress in steel, 1b/in? (kPa); €, = strain of
extreme compression fiber; €, = strain of
steel; b = beam width, in (mm); d = beam
”' depth, in (mm); 4, = area of tension rein-
1% clear forcement, in?> (cm?); p = tension-
(381 mm) reinforcement ratio, 4,/(bd); q = tension-
reinforcement index, pf,/f,’; n = ratio of
modulus of elasticity of steel to that of
concrete, E/E,; C = resultant compressive
force on transverse section, 1b (N); 7= re-
sultant tensile force on transverse section,
b (N). :
(0) Beam with stirrups Where the subscript b is appended to a
symbol, it signifies that the given quantity
is evaluated at balanced-design conditions.

/—Sﬁrrup

effective depth
4

d=

2%+

(63.5mm)
1% clear
(38.1mm)

(25.4 mm)

A
v
A
"

%, clear

"
|

{19.05 mm)

Design of Flexural Members by
Ultimate-Strength Method

b) St . . N
(b} Stab In the ultimate-strength design of a rein-

FIGURE 1. Spacing of reinforcing bars. forced-concrete structure, as in the plastic
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design of a steel structure, the capacity of the structure is found by determining the load
that will cause failure and dividing this result by the prescribed load factor. The load at
impending failure is termed the ultimate load, and the maximum bending moment associ-
ated with this load is called the ultimate moment.

Since the tensile strength of concrete is relatively small, it is generally disregarded en-
tirely in analyzing a beam. Consequently, the effective beam section is ¢onsidered to
comprise the reinforcing steel and the concrete on the compression side of the neutral
axis, the concrete between these component areas serving merely as the ligature of the
member.

The following notational system is applied in ultimate-strength design: a = depth of
compression block, in (mm); ¢ = distance from extreme compression fiber to neutral axis,
in (mm); ¢ = capacity-reduction factor.

Where the subscript u is appended to a symbol, it signifies that the given quantity is
evaluated at ultimate load.

For simplicity (Fig. 2), designers assume that when the ultimate moment is attained at
a given section, there is a uniform stress in the concrete extending across a depth a, and
that £, = 0.85f/, and a = k¢, where k, has the value stipulated in the ACI Code.

A reinforced-concrete beam has three potential modes of failure: crushing of the con-
crete, which is assumed to occur when €, reaches the value of 0.003; yielding of the steel,
which begins when f; reaches the value f;; and the simultaneous crushing of the concrete
and yielding of the steel. A beam that tends to fail by the third mode is said to be in bail-
anced design. If the value of p exceeds that corresponding to balanced design (i.e., if there
is an excess of reinforcement), the beam tends to fail by crushing of the concrete. But if
the value of p is less than that corresponding to balanced design, the beam tends to fail by
yielding of the steel.

Failure of the beam by the first mode would occur precipitously and without warning,
whereas failure by the second mode would occur gradually, offering visible evidence of
progressive failure. Therefore, to ensure that yielding of the steel would occur prior to
failure of the concrete, the ACI Code imposes an upper limit of 0.75p, on p.

To allow for material imperfections, defects in workmanship, etc., the Code intro-
duces the capacity-reduction factor ¢. A section of the Code sets ¢ = 0.90 with respect to
flexure and ¢ = 0.85 with respect to diagonal tension, bond, and anchorage.

The basic equations for the ultimate-strength design of a rectangular beam reinforced
solely in tension are

b €
fe
a/2
a
c <
d N.A
-0 —tp ———
fy T,
€
() Section (b) Strains (c) Stresses (d) Resultant

forces

FIGURE 2. Conditions at yltimate moment.
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C, = 0.85abf’
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Figure 3 shows the relationship between M,, and 4, for a beam of given size. As 4, in-
creases, he internal forces C, and T, increase proportionately, but M, increases by a
smaller proportion because the action line of C, is depressed. The M,-A,, diagram is para-
bolic, but its curvature is small. By comparing the coordinates of two points P, and P,
the following result is obtained, in which the subscripts correspond to that of the given

point:

M, M,
>
Asa

(11)

'S

sb

where 4., < A4,

CAPACITY OF A
RECTANGULAR BEAM

A rectangular beam having a width of 12 in
(304.8 mm) and an effective depth of 19.5 in
(495.3 mm) is reinforced with steel bars hav-

5 -~
s ~
= Po
Q
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Ag mox

Area of reinforcement Ag

FIGURE 3
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ing an area of 5.37 in? (34.647 cm?). The beam is made of 2500-1b/in? (17,237.5-kPa)
concrete, and the steel has a yield-point stress of 40,000 Ib/in? (275,800 kPa). Compute
the ultimate moment this beam may resist (a) without referring to any design tables and
without applying the basic equations of ultimate-strength design except those that are
readily apparent; (b) by applying the basic equations.

Calculation Procedure:

1. Compute the area of reinforcement for balanced design

Use the relation €, = f,/E; = 40,000/29,000,000 = 0.00138. For balanced design, c/d =
€/(e. + €)= 0.003/(0.003 + 0.00138) = 0.685. Solving for ¢ by using the relation for ¢/d,
we find ¢ = 13.36 in (339.344 mm). Also, a = k,c = 0.85(13.36) = 11.36 in (288.544 mm).
Then T, = C, = ab(0.85)f] = 11.36(12)(0.85)(2500) = 290,000 Ib (1,289,920 N); 4, =
T, /f, = 290,000/40,000 = 7.25 in? (46,777 cm?); and 0.754, = 5.44 in? (35.097 cm?). In
the present instance, 4, = 5.37 in? (34.647 cm?). This is acceptable.

2. Compute the ultimate-moment capacity of this member

Thus T, = 4, f, = 5.37(40,000) = 215,000 1b (956,320 N); C, = ab(0.85)f, = 25,500a =
215,000 1b (956,320 N); a = 8.43 in (214.122 mm); M, = ¢T(d — a/2) = 090
(215,000)(19.5 — 8.43/2) = 2,960,000 in‘Ib (334,421 N'm). These two steps comprise the
solution to part a. The next two steps comprise the solution of part .

3. Apply Eq. 10; ascertain whether the member satisfies the Code
Thus, ¢ma.x = 0.6375k,(87,000)/(87,000 + £) = 0.6375(0.85)87/127) = 0.371; g =
[A/(BbDS; =[5.37/(12 x 19.5)]140/2.5 = 0.367. This is acceptable.

4. Compute the ultimate-moment capacity

Applying Eq. 5 yields M, = ¢4, f,d(1 — 0.59¢) = 0.90(5.37)(40,000)(19.5)(1 - 0.59 x
0.367) = 2,960,000 in-1b (334,421 N-m). This agrees exactly with the result computed in
step 2.

DESIGN OF A RECTANGULAR BEAM

A beam on a simple span of 20 ft (6.1 m) is to carry a uniformly distributed live load of
1670 Ib/lin ft (24,372 N/m) and a dead load of 470 1b/lin ft (6859 N/m), which includes
the estimated weight of the beam. Architectural details restrict the beam width to 12 in
(304.8 mm) and require that the depth be made as small as possible. Design the section,
using £, = 3000 Ib/in? (20,685 kPa) and £, = 40,000 Ib/in? (275,800 kPa).

Calculation Procedure:

1. Compute the ultimate load for which the member
is to be designed .
The beam depth is minimized by providing the maximum amount of reinforcement per-
mitted by the Code. From the previous calculation procedure, ¢, = 0.371.

Use the load factors given in the Code: wpp = 470 1b/lin ft (6859 N/m); wy; = 1670
1b/lin ft (24,372 N/m); L = 20 ft (6.1 m). Then w, = 1.5(470) + 1.8(1670) = 3710 Ib/lin ft
(54,143 N/m); M, = Y4 (3710)(20)212 = 2,230,000 in‘lb (251,945.4 N'm).
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2. Establish the beam size
Solve Eq. 6 for d. Thus, d? = M,/¢bf q(1 — 0.59¢)] = 2,230,000/{0.90(12)(3000) x
(0.371)(0.781)]; d = 15.4 in (391.16 mm).

Set d = 15.5 in (393.70 mm). Then the corresponding reduction in the value of ¢ is
negligible.
3. Select the reinforcing bars
Using Eq. 2, we find 4, = gbdyf,’[f, = 0.371(12)(15.5)(3/40) = 5.18 in> (33.421 cm?). Use
four no. 9 and two no. 7 bars, for which 4, = 5.20 in? (33.550 ¢cm?). This group of bars
cannot be accommodated in the 12-in (304.8-mm) width and must therefore be placed in
two rows. The overall beam depth will therefore be 19 in (482.6 mm).

4. Summarize the design
Thus, the beam size is 12 x 19 in (304.8 x 482.6 mm); reinforcement, four no. 9 and two
no. 7 bars.

DESIGN OF THE REINFORCEMENT IN A
RECTANGULAR BEAM OF GIVEN SIZE

A rectangular beam 9 in (228.6 mm) wide with a 13.5-in (342.9-mm) effective depth is to
sustain an ultimate moment of 95 ftkips (128.8 kN-m). Compute the area of reinforce-
ment, using f." = 3000 Ib/in? (20,685 kPa) and f, = 40,000 1b/in® (275,800 kPa).

Calculation Procedure:

1. Investigate the adequacy of the beam size

From previous calculation procedures, ¢, = 0.371. By Eq. 6, M, ,,, = 0.90 x
(9)(13.5)%(3)(0.371)(0.781) = 1280 inkips (144.6 kN'm); M, = 95(12) = 1140 in-kips
(128.8 kN'm). This is acceptable.

2. Apply Eq. 7 to evaluate A,

Thus, £, = 0.85(3) = 2.55 kips/in? (17.582 MPa); bdf, = 9(13.5)(2.55) = 309.8 kips
(1377.99 kN); 4, = [309.8 — (309.82 - 58,140)05]/40 = 2.88 in? (18.582 cm?).

CAPACITY OF A T BEAM

Determine the ultimate moment that may be resisted by the T beam in Fig. 4a if £/ = 3000
Ib/in? (20,685 kPa) and f, = 40,000 1b/in? (275,800 kPa).

Calculation Procedure:

1. Compute T, and the resultant force that may be developed

in the flange

Thus, T, = 8.20(40,000) = 328,000 1b (1,458,944 N); f. = 0.85(3000) = 2550 1b/in®
(17,582.3 kPa); C,,= 18(6)(2550) = 275,400 1b (1,224,979 N). Since C,,< T,,, the defi-
ciency must be supplied by the web.
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2. Compute the resultant force developed in the web and the
depth of the stress block in the web

Thus, C,,,, = 328,000 — 275,400 = 52,600 1b (233,964.8 N); m = depth of the stress block =
52,600/[2550(10)] = 2.06 in (52324 mm).

3. Evaluate the ultimate-moment capacity
Thus, M, = 0.90[275,400(20.5 — 3) + 52,600(20.5 — 6 — 1.03)] = 4,975,000 in-lb
(562,075.5 N'm).
4. Determine if the reinforcement compiles with the Code
Let b’ = width of web, in (mm); 4,; = area of reinforcement needed to resist the compres-
sive force in the overhanging portion of the flange, in? (cm?); 4, = area of reinforcement
needed to resist the compressive force in the remainder of the section, in? (cm?). Then p,
= A,/(b'd); A, = 2550(6)(18 — 10)740,000 = 3.06 in? (19.743 cm?); 4, = 8.20 — 3.06 =
5.14 in? (33.163 cm?). Then p, = 5.14/(10(20.5)] = 0.025.

A section of the ACI Code subjects the reinforcement ratio p, to the same restriction
as that in a rectangular beam. By Eq. 8, p; pax = 0.75p, = 0.75(0.85)(0.85)(3/40)(87/127)
=0.0278 > 0.025. This is acceptable.

CAPACITY OF A T BEAM OF GIVEN SIZE

The T beam in Fig. 5 is made of 3000-Ib/in? (20,685-kPa) concrete, and J,= 40,000 Ib/in?
(275,800 kPa). Determine the ultimate-moment capacity of this member if it is reinforced
in tension only.

Calculation Procedure:

1. Compute C,,;, C,2 nax 8nd Spox

Let the subscript 1 refer to the overhanging portion of the flange and the subscript 2 refer
to the remainder of the compression zone. Then £, = 0.85(3000) = 2550 Ib/in? (17,582.3
kPa); C,; = 2550(5)(16 — 10) = 76,500 1b (340,272 N). From the previous calculation
procedure, p, ., = 0.0278. Then A5 . = 0.0278(10)(19.5) = 5.42 in® (34.970 cm?);
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Coomax = 5:42(40,000) = 216,800 Ib 5" 6"

(964,326.4 N); 5,5, = 216,800/(10(2550)] 027 mm 1 17356 4 mm) c
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2. Compute the ultimate- ) Cuz

moment capacity - 10"
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216,800(19.5 — 8.50/2)] = 4,145,000 in'lb | s o —_—
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FIGURE 5

DESIGN OF REINFORCEMENT
IN A T BEAM OF GIVEN SIZE

The T beam in Fig. 5 is to resist an ultimate moment of 3,960,000 in'1b (447,400.8 N-m).
Determine the required area of reinforcement, using £’ = 3000 Ib/in? (20,685 kPa) and f, =
40,000 1b/in? (275,300 kPa).

Calculation Procedure:

1. Obtain a moment not subject to reduction

From the previous calculation procedure, the ultimate-moment capacity of this member is
4,145,000 in-1b (468,300 N-m). To facilitate the design, divide the given ultimate moment
M, by the capacity-reduction factor to obtain a moment M, that is not subject to reduc-
tion. Thus M, = 3,960,000/0.9 = 4,400,000 in'Ib (497,112 N-m).

2. Compute the value of s associated with the given moment

From step 2 in the previous calculation procedure, M,,; = 1,300,000 in-lb (146,874 N-m).
Then M,, = 4,400,000 — 1,300,000 = 3,100,000 inlb (350,238 N'm). But M,, =
2550(10s)(19.5 — 5/2), so s = 7.79 in (197.866 mm).

3. Compute the area of reinforcement

Thus, C,;, = M,,/(d — Ys) = 3,100,0007(19.5 — 3.90) = 198,700 1b (883,817.6 N). From
step 1 of the previous calculation procedure, C,; = 76,500 Ib (340,272 N); T, = 76,500 +
198,700 = 275,200 1b (1,224,089.6 N); 4, = 275,200/40,000 = 6.88 in? (174.752 mm).

4. Verify the solution

To verify the solution, compute the ultimate-moment capacity of the member. Use the no-
tational system given in earlier calculation procedures. Thus, C,, = 16(5)(2550) =
204,000 1b (907,392 N); C,,, = 275,200 — 204,000 = 71,200 Ib (316,697.6 N); m =
71,200/[2550(10)] = 2.79 in (70.866 mm); M, = 0.90 [204,000 (19.5 — 2.5) + 71,200(19.5
— 5 - 1.40)] = 3,960,000 in-1b (447,400.8 N-m). Thus, the result is verified because the
computed moment equals the given moment.

REINFORCEMENT AREA FOR A DOUBLY
REINFORCED RECTANGULAR BEAM

A beam that is to resist an ultimate moment of 690 ft-kips (935.6 kN'm) is restricted to a
14-in (355.6-mm) width and 24-in (609.6-mm) total depth. Using £ = 5000 1b/in? and
J,= 50,000 Ib/in? (344,750 kPa), determine the area of reinforcement.
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Calculation Procedure:

1. Compute the values of q,, q,,., and p,.. for a singly

reinforced beam

As the following calculations will show, it is necessary to reinforce the beam both in ten-
sion and in compression. In Fig. 6, let 4, = area of tension reinforcement, in? (cm?); 4, =
area of compression reinforcement, in? (cm?); d' = distance from compression face of
concrete to centroid of compression reinforcement, in (mm); f; = stress in tension steel,
1b/in? (kPa); f,’ = stress in compression steel, 1b/in? (kPa); €/= strain in compression steel;
p = AJ(bd); p' = A;/(bd); q = pf,/f.; M, = ultimate moment to be resisted by member,
in'lb (N'm); M,,; = ultimate-moment capacity of member if reinforced solely in tension;
M,; = increase in ultimate-moment capacity resulting from use of compression reinforce-
ment; C,, = resultant force in concrete, Ib (N); C,, = resultant force in compression steel,
b (N).

If f' =, the tension reinforcement may be resolved into two parts having areas of A4,
— A/ and 4. The first part, acting in combination with the concrete, develops the moment
M,,. The second part, acting in combination with the compression reinforcement, devel-
ops the moment M,,.

To ensure that failure will result from yielding of the tension steel rather than crushing
of the concrete, the ACI Code limits p — p’ to a maximum value of 0.75p,, where p,, has
the same significance as for a singly reinforced beam. Thus the Code, in effect, permits
setting f;" = f, if inception of yielding in the compression steel will precede or coincide
with failure of the concrete at balanced-design ultimate moment. This, however, intro-
duces an inconsistency, for the limit imposed on p — p' precludes balanced design.

By Eq. 9, ¢, = 0.85(0.80)(87/137) = 0.432; gmax = 0.75(0.432) = 0.324; ppax =
0.324(5/50) = 0.0324.

2. Compute M, M, and C,,

Thus, M, = 690,000(12) = 8,280,000 in-lb (935,474.4 N-m). Since two rows of tension
bars are probably required, d = 24 — 3.5 = 20.5 in (520.7 mm). By Eq. 6, M, =
0.90(14)(20.5)%(5000) x (0.324)(0.809) = 6,940,000 in'lb (784,081.2 N'm); M,,
8,280,000 — 6,940,000 = 1,340,000 inlb (151,393.2 N'm); C,, = M,/(d — d')
1,340,000/(20.5 — 2.5) = 74,400 1b (330,931.2 N).

4" €5
(355.6 mm) | {(63.5mm) (_-l
- o] 25 Cuz
-
_—f o —
Cul
20.5"
24" (520.7 mm)
(609.6 mm},
® o o -
® o e T
']
€s
(a) Section (b) Strains (c) Resultant
forces

FIGURE 6. Doubly reinforced rectangular beam.



REINFORCED CONCRETE 2.11

3. Compute the value of ¢, under the balanced-design

ultimate moment

Compare this value with the strain at incipient yielding. By Eq. 3, ¢, = 1.18g,d/k; =
1.18(0.432)(20.5)/0.80 = 13.1 in (332.74 mm); €//e, = (13.1 — 2.5)/13.1 = 0.809; €, =
0.809(0.003) = 0.00243; €, = 50/29,000 = 0.0017 < ¢,. The compression reinforcement
will therefore yield before the concrete fails, and f;" = £, may be used.

4. Alternatively, test the compression steel for yielding
Apply

_,_ 0.85k f2d'(87,000)
= 7 £d(87,000-£)

If this relation obtains, the compression steel will yield. The value of the right-hand mem-
ber is 0.85(0.80)(5/50)(2.5/20.5)(87/37) = 0.0195. From the preceding calculations, p —p’
=0.0324 > 0.0195. This is acceptable.

5. Determine the areas of reinforcement

By Eq. 2, 4, = A = qu,:bdf}lf, = 0.324(14)(20.5)(5/50) = 9.30 in? (60.00 cm?); 4, =
C,o/(¢f,) = 74,400/[0.90(50,000)] = 1.65 in? (10.646 cm?); 4, = 9.30 + 1.65 = 10.95 in?
(70.649 cm?).

6. Verify the solution

Apply the following equations for the uitimate-moment capacity:

(12)

_ (As - Asl)f):
"~ 0.85(b 13
So a = 9.30(50,000)/[0.85(5000)(14)] = 7.82 in (198.628 mm). Also,
M= o5 (4, (d- 5 ) +4rd-a)] (14)

So M, = 0.90(50,000)(9.30 x ( 16.59 + 1.65 x 18) = 8,280,000 in-1b (935,474.4 N-m), as
before. Therefore, the solution has been verified.

DESIGN OF WEB REINFORCEMENT

A 15-in (381-mm) wide 22.5-in (571.5-mm) effective-depth beam carries a uniform ulti-
mate load of 10.2 kips/lin ft (148.86 kN/m). The beam is simply supported, and the clear
distance between supports is 18 ft (5.5 m). Using f," = 3000 Ib/in? (20,685 kPa) and f, =
40,000 Ib/in? (275,800 kPa), design web reinforcement in the form of vertical U stirrups
for this beam.

Caiculation Procedure:

1. Construct the shearing-stress diagram for half-span

The ACI Code provides two alternative methods for computing the allowable shearing
stress on an unreinforced web. The more precise method recognizes the contribution of
both the shearing stress and flexural stress on a cross section in producing diagonal ten-
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FIGURE 7. Shearing stress diagram

sion. The less precise and more conservative method restricts the shearing stress to a stip-
ulated value that is independent of the flexural stress.

For simplicity, the latter method is adopted here. A section of the Code sets ¢ = 0.85
with respect to the design of web reinforcement. Let v, = nominal ultimate shearing
stress, 1b/in? (kPa); v, = shearing stress resisted by concrete, 1b/in? (kPa); v, = shearing
stress resisted by the web reinforcement, Ib/in? (kPa); 4, = total cross-sectional area of
stirrup, in? (cm?); ¥, = ultimate vertical shear at section, Ib (N); s = center-to-center spac-
ing of stirrups, in (mm).

The shearing-stress diagram for half-span is shown in Fig. 7. Establish the region AF
within which web reinforcement is required. The Code sets the allowable shearing stress
in the concrete at

e =2¢(f))? (15)
The equation for nominal ultimate shearing stress is
Va
== 16
0= (16)

Then, v, = 2(0.85)(3000)°3 = 93 1b/in? (641.2 kPa).

At the face of the support, ¥, = 9(10,200) = 91,800 Ib (408,326.4 N); v, =
91,800/[15(22.5)] = 272 Ib/in? (1875.44 kPa). The slope of the shearing-stress diagram =
—272/108 = -2.52 Ib/(in%*in) (—0.684 kPa/mm). At distance d from the face of the support,
v, =272 —22.5(2.52) = 215 Ib/in? (1482.4 kPa); v, = 215 — 93 = 122 Ib/in? (841.2 kPa).

Let E denote the section at which v, = v,. Then, AE = (272 — 93)/2.52 =71 in (1803.4
mm). A section of the Code requires that web reinforcement be continued for a distance d
beyond the section where v, =v,; AF =71 + 22.5 =93.5 in (2374.9 mm).

2. Check the beam size for Code compliance
Thus, 9, max =10¢( £ )" = 466 > 215 Ib/in? (1482.4 kPa). This is acceptable.
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3. Select the stirrup size
Equate the spacing near the support to the minimum practical value, which is generally
considered to be 4 in (101.6 mm). The equation for stirrup spacing is

A, f,
= — 17
d vl b an
Then 4, = sv,b/($f,) = 4(122)(15)/[0.85(40,000)] = 0.215 in? (1.3871 cm?). Since each
stirrup is bent into the form of a U, the total cross-sectional area is twice that of a straight
bar. Use no. 3 stirrups for which 4, =2(0.11) = 0.22 in? (1.419 cm?).

4. Establish the maximum allowable stirrup spacing

Apply the criteria of the Code, or s, = d/4 if v > 6¢(f.")%5. The right-hand member of
this inequality has the value 279 Ib/in? (1923.70 kPa), and this limit therefore does not ap-
ply. Then s.,,, = d/2 = 11.25 in (285.75 mm), or s, =4, /(0.0015b) = 0.22/[0.0015(15)]
= 9.8 in (248.92 mm). The latter limit applies, and the stirrup spacing will therefore be re-
stricted to 9 in (228.6 mm).

5. Locate the beam sections at which the required stirrup spacing
is 6 in (152.4 mm) and 9 in (228.6 mm) .

Use Eq. 17. Then ¢4, £,/b = 0.85(0.22)(40,000)/15 = 499 1b/in (87.38 kN/m). At C: v,/ =
499/6 = 83 Ib/in? (572.3 kPa); v, = 83 + 93 = 176 Ib/in? (1213.52 kPa); AC = (272 -
176)/2.52 = 38 in (965.2 mm). At D: v, = 499/9 = 55 1b/in? (379.2 kPa); v, = 55 + 93 =
148 Ib/in? (1020.46 kPa); AD = (272 — 148)/2.52 = 49 in (1244.6 mm).

6. Devise a stirrup spacing conforming to the computed results
The following spacing, which requires 17 stirrups for each half of the span, is satisfactory
and conforms with the foregoing results:

Distance from last
stirrup to face of

Quantity  Spacing, in (mm) Total, in (mm) support, in (mm)
1 2 (50.8) 2 (50.8) 2 (50.8)
9 4 (101.6) 36 (914.4) 38 (965.2)
2 6 (152.4) 12 (304.8) 50 (1270)
5 9 (228.6) 45 (1143) 95 (2413)

DETERMINATION OF BOND STRESS

A beam of 4000-Ib/in? (27,580-kPa) concrete has an effective depth of 15 in (381 mm)
and is reinforced with four no. 7 bars. Determine the ultimate bond stress at a section
where the ultimate shear is 72 kips (320.3 kN). Compare this with the allowable stress.

Calculation Procedure:

1. Determine the ultimate shear flow h,
The adhesion of the concrete and steel must be sufficiently strong to resist the horizontal
shear flow. Let u, = ultimate bond stress, 1b/in? (kPa); ¥, = ultimate vertical shear, Ib (N);
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2.0 = sum of perimeters of reinforcing bars, in (mm). Then the ultimate shear flow at any
plane between the neutral axis and the reinforcing steel is &, =V, /(d — a/2).

In conformity with the notational system of the working-stress method, the distance d
- a/2 is designated as jd. Dividing the shear flow by the area of contact in a unit length
and introducing the capacity-reduction factor yield

Hu= dojd

(18)

A section of the ACI Code sets ¢ = 0.85 with respect to bond, and j is usually assigned the
approximate value of 0.875 when this equation is used.
2. Calculate the bond stress
Thus, %o = 11.0 in (279.4 mm), from the ACI Handbook. Then u, = 72,000/[0.85(11.0)
(0.875) x (15)] = 587 Ib/in? (4047 .4 kPa).

The allowable stress is given in the Code as

9.5(f2)05
uu,allow = __’;— (19)

but not above 800 Ib/in? (5516 kPa). Thus, t, aon = 9.5(4,000)%5/0.875 = 687 Ib/in?
(4736.9 kPa).

DESIGN OF INTERIOR SPAN OF A
ONE-WAY SLAB

A floor slab that is continuous over several spans carries a live load of 120 1b/ft? (5745
N/m?) and a dead load of 40 Ib/ft?> (1915 N/m?), exclusive of its own weight. The clear
spans are 16 ft (4.9 m). Design the interior span, using £, = 3000 Ib/in? (20,685 kPa) and
£, = 150,000 1b/in? (344,750 kPa).

Calculation Procedure:

1. Find the minimum thickness of the slab as governed by
the Code
Refer to Fig. 8. The maximum potential positive or negative moment may be found by ap-
plying the type of loading that will induce the critical moment and then evaluating this
moment. However, such an analysis is time-consuming. Hence, it is wise to apply the
moment equations recommended in the ACI Code whenever the span and loading condi-
tions satisfy the requirements given there. The slab is designed by considering a 12-in
(304.8-mm) strip as an individual beam, making b = 12 in (304.8 mm).

Assuming that L = 17 ft (5.2 m), we know the minimum thickness of the slab is ¢, =
L/35=17(12)/35 = 5.8 in (147.32 mm).

2. Assuming a slab thickness, compute the ultimate load

on the member

Tentatively assume ¢ = 6 in (152.4 mm). Then the beam weight = (6/12)(150 1b/ft> = 75
Ib/lin ft (1094.5 N/m). Also, w, = 1.5(40 + 75) + 1.8(120) = 390 Ib/lin ft (5691.6 N/m).
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3. Compute the shearing stress associated with the assumed
beam size

From the Code for an interior span, V,, = Yaw, L’ = 1%(390)(16) = 3120 Ib (13,877.8 N); d =
6—1=>5in (127 mm); v, = 3120/[12(5)] = 52 Ib/in? (358.54 kPa); v. = 93 lb/in® (641.2
kPa). This is acceptable.

4. Compute the two critical moments
Apply the appropriate moment equations. Compare the computed moments with the mo-
ment capacity of the assumed beam size to ascertain whether the size is adequate. Thus,
M, e = (V11/w, L2 = (/11)(390)(16)%(12) = 108,900 in-lb (12,305.5 N-m), where the value
12 converts the dimension to inches. Then M, pos =1/ew,L'? =74, 900 in'lb (8462.2 N'm).
By Eq. 10, g = 0.6375(0. 85)(87/ 137) = 0.344. By Eq. 6, M, . = 0.90(12)
(5)%(3000)(0.344)(0.797) = 222,000 in'Ib (25,081.5 N-m). This is acceptable The slab
thickness will therefore be made 6 in (152.4 mm).

5. Compute the area of reinforcement associated with each
critical moment

By Eq. 7, bdf, = 12(5)(2.55) = 153.0 kips (680.54 kN); then 2bf,M, /¢ =
2(12)(2.55)(108.9)/0.90 = 7405 kips® (146,505.7 kN?); A, e, = [153.0 — (153.07 -
7405)*%1/50 = 0.530 in? (3.4196 cm?). Similarly, 4, ;. = 0.353 in? (2.278 cm?).
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6. Select the reinforcing bars, and locate the bend points

For positive reinforcement, use no. 4 trussed bars 13 in (330.2 mm) on centers, alternating
with no. 4 straight bars 13 in (330.2 mm) on centers, thus obtaining 4, = 0.362 in? (2.336
cm?),

For negative reinforcement, supplement the trussed bars over the support with no. 4
straight bars 13 in (330.2 mm) on centers, thus obtaining 4, = 0.543 in? (3.502 cm?).

The trussed bars are usually bent upward at the fifth points, as shown in Fig. 8a. The
reinforcement satisfies a section of the ACI Code which requires that “at least . . . one-
fourth the positive moment reinforcement in continuous beams shall extend along the
same face of the beam into the support at least 6 in (152.4 mm).”

7. Investigate the adequacy of the reinforcement beyond

the bend points

In accordance with the Code, Ay, = 4, = 0.0020b¢ = 0.0020(12)(6) = 0.144 in? (0.929
cm?),

A section of the Code requires that reinforcing bars be extended beyond the point at
which they become superfluous with respect to flexure a distance equal to the effective
depth or 12 bar diameters, whichever is greater. In the present instance, extension =
12(0.5) = 6 in (152.4 mm). Therefore, the trussed bars in effect terminate as positive rein-
forcement at section A (Fig. 8). Then L'/5 =32 ft (0.98 m); AM=8-32-0.5=43ft
(1.31 m).

The conditions 1mmed1ate1y to the left of 4 are M, = M, — Vaw (AM)? = 74,900 —
145(390)(4.3)%(12) = 31,630 in'lb (3573.56 N m), 5,pos = 0. 181 in? (1.168 cm?); g =
0.181(50)/[12(5)(3)] = 0.0503. By Eq. 5, M, 0w = 0.90(0.181)(50,000)(5)(0.970) =
39,500 in‘1b (4462.7 N'm). This is acceptable.

Alternatively, Eq. 11 may be applied to obtain the following conservative approxima-
tion: M, ziow = 74,900(0.181)/0.353 = 38,400 in'Ib (4338.43 N'm).

The trussed bars in effect terminate as negative reinforcement at B, where O"B =3.2 —
0 33 - 0.5 = 2.37 ft (72.23 m). The conditions 1mmed1ately to the right of B are |M,| =

M, g — 12(3120 x 2.37 — Y4 x 390 x 2.372) = 33,300 in‘lb (3762.23 N'm). Then 4, ., =
0.362 in? (2.336 cm?). As a conservative approximation, M, 5., = 108,900(0.362)/0. 530
= 74,400 in'lb (8405.71 N-m). This is acceptable.

8. Locate the point at which the straight bars at the top may
be discontinued

9. Investigate the bond stresses
In accordance with Eq. 19, U, 40w = 800 1b/in? (5516 kPa).

If CDE in Fig. 8b represents the true moment diagram, the bottom bars are subjected
to bending stress in the interval NN'. Manifestly, the maximum bond stress along the bot-
tom occurs at these boundary points (points of contraflexure), where the shear is relative-
ly high and the straight bars alone are present. Thus MN = 0.354L’; ¥V, at N/V,, at support
= 0.354L'/(0.5L") = 0.71; V, at N = 0.71(3120) = 2215 1b (9852.3 N). By Eq. 18, u, =
V. /(3 ojd) = 2215/[0.85(1.45)(0.875)(5)] = 411 1b/in? (2833.8 kPa). This is acceptable. It
is apparent that the maximum bond stress in the top bars has a smaller value.

ANALYSIS OF A TWO-WAY SLAB
BY THE YIELD-LINE THEORY

The slab in Fig. 9a is simply supported along all four edges and is isotropically rein-
forced. It supports a uniformly distributed ultimate load of w, 1b/fi?> (kPa). Calculate the
ultimate unit moment m,, for which the slab must be designed.
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FIGURE 9. Analysis of two-way slab by mechanism method.

Calculation Procedure:

1. Draw line GH perpendicular to AE at E; express distances b

and c in terms of a

Consider a slab to be reinforced in orthogonal directions. If the reinforcement in one di-
rection is identical with that in the other direction, the slab is said to be isotropically rein-
forced, if the reinforcements differ, the slab is described as orthogonally anisotropic. In
the former case, the capacity of the slab is identical in all directions; in the latter case, the
capacity has a unique value in every direction. In this instance, assume that the slab size is
excessive with respect to balanced design, the result being that the failure of the slab will
be characterized by yielding of the steel.

In a steel beam, a plastic hinge forms at a section; in a slab, a plastic hinge is assumed
to form along a straight line, termed a yield line. It is plausible to assume that by virtue of
symmetry of loading and support conditions the slab in Fig. 9a will fail by the formation
of a central yield line EF and diagonal yield lines such as AE, the ultimate moment at
these lines being positive. The ultimate unit moment m, is the moment acting on a unit
length.

Although it is possible to derive equations that give the location of the yield lines, this
procedure is not feasible because the resulting equations would be unduly cumbersome.
The procedure followed in practice is to assign a group of values to the distance a and to
determine the corresponding values of m,. The true value of m, is the highest one ob-
tained. Either the static or mechanism method of analysis may be applied; the latter will
be applied here.

Expressing the distances b and c in terms of a gives tan a = 6/a = AE/b = c/(AE); b =
adE/6; c = 64E/a.

2. Find the rotation of the plastic hinges
Allow line EF to undergo a virtual displacement A after the collapse load is reached.
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During the virtual displacement, the portions of the slab bounded by the yield lines and
the supports rotate as planes. Refer to Fig. 95 and c: 8, = A/6; 6, =26, = A/3=0.333A; 6,
= A/b; 6, = Alc; 05 = A(1/b + 1/c) = [AKAE))(6/a + a/6).

3. Select a trial value of a, and evaluate the distances and angles
Using a = 4.5 ft (1.37 m) as the trial value, we find AE = (a® + 6%)%5 = 7.5 ft (2.28 m);
b=5.63ft (1.716 m); c = 10 ft (3.0 m); 05 = (A/7.5)(6/4.5 + 4.5/6) = 0.278A.

4. Develop an equation for the external work Wg performed by the
uniform load on a surface that rotates about a horizontal axis

In Fig. 10, consider that the surface ABC rotates about axis 4B through an angle 6 while
carrying a uniform load of w Ib/ft? (kPa). For the elemental area dA4,, the deflection, total
load, and external work are & = x0;, dW =w dA; dWg = 6 dW = x6w dA. The total work for
the surface is Wy =w#@ [ x dA, or

W= wbQ (20)

where Q = static moment of total area, with respect to the axis of rotation.

5. Evaluate the external and internal
work for the slab
Using the assumed value, we see a = 4.5 ft (1.37
B Area = dA m), EF =16 -9 =7 ft (2.1 m). The external work
) for the two triangles is 2w, (A/4.5)(V/6)(12)(4.5)% =
18w,A. The external work for the two trapezoids
c is 2w, (A/6)(Vs)(16 + 2 x T)(6)%> = 60w,A. Then Wy
=w,A(18 + 60)=T8w,A; W;=m,(76,+4 x 7.565)
=10.67m,A.
6. Find the value of m,
corresponding to the assumed value
of a
Equate the external and internal work to find this
value of m,. Thus, 10.67m,A = 78w,A;, m, =
o c 731w,

AB=c 3 T RN 7. Determine the highest value of m,
~ / Assign other trial values to a, and find the corre-
o ~J sponding values of m,. Continue this procedure
c' until the highest value of m, is obtained. This is
FIGURE 10 the true value of the ultimate unit moment.

{a) Plan

Design of Flexural Members by the Working-Stress Method

As demonstrated earlier, the analysis or design of a composite beam by the working-stress
method is most readily performed by transforming the given beam to an equivalent homo-
geneous beam. In the case of a reinforced-concrete member, the transformation is made
by replacing the reinforcing steel with a strip of concrete having an area n4, and located
at the same distance from the neutral axis as the steel. This substitute concrete is assumed
capable of sustaining tensile stresses.

The following symbols, shown in Fig. 11, are to be added to the notational system giv-
en earlier: kd = distance from extreme compression fiber to neutral axis, in (mm); jd =
distance between action lines of C and 7, in (mm); z = distance from extreme compres-
sion fiber to action line of C, in (mm).
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The basic equations for the working-stress de- , fe
sign of a rectangular beam reinforced solely in ten- O L
sion are kd c
£ N.A.
k= —— 21 f / id
i fin @1 y j
k L /
j=1- 3 (22) t,/n -
i 12 FIGURE 11. Stress and result-
M = Gjd =Y kjbd @3 ant forces.
M =Ysf, k(3 ~ k)bd* 24)
M =Tjd =fA,jd (25)
M = f,pjbd? (26)
(3 - kybd?
_fRG-k @
6n(l -k)
Sk
P= 28
kl
=5 2
P -k @9
k=[2pn+ (ny’1°* - pn (30)

For a given set of values of £, f;, and n, M is directly proportional to the beam proper-
ty bd?. Let K denote the constant of proportionality. Then

M = Kbd? @31
where
K="%fk=fp (32)

The allowable flexural stress in the concrete and the value of n, which are functions of
the ultimate strength £, are given in the ACI Code, as is the allowable flexural stress in
the steel. In all instances in the following procedures, the assumption is that the reinforce-
ment is intermediate-grade steel having an allowable stress of 20,000 Ib/in? (137,900
kPa).

Consider that the load on a beam is gradually increased until a limiting stress is in-
duced. A beam that is so proportioned that the steel and concrete simultaneously attain
their limiting stress is said to be in balanced design. For each set of values of £’ and f;,
there is a corresponding set of values of X, £, j, and p associated with balanced design.
These values are recorded in Table 1.
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Table 1. Values of Design Parameters at Balanced Design

fandn A A K k Jj ¥4
2500 1125 20,000 178 0.360 0.880 0.0101
10
3000 1350 20,000 223 0.378 0.874 0.0128
9
4000 1800 20,000 324 0.419 0.853 0.0188
8
5000 2250 20,000 423 0.441 0.853 0.0248
7
Allowable f In Fig. 12, AB represents the stress
line of the transformed section for a
B’ B beam in balanced design. If the area of
reinforcement is increased while the
kd width and depth remain constant, the
o" 4 neutral axis is depressed to O’, and

NA. ot
balanced design

o

d /?/o'
/

L/

A'

Allowable f;/n

FIGURE 12

A'O'B represents the stress line under
the allowable load. But if the width is
increased while the depth and area of re-
inforcement remain constant, the neutral
axis is elevated to O", and AO"B’ repre-
sents the stress line under the allowable
load. This analysis leads to these con-
clusions: If the reinforcement is in ex-
cess of that needed for balanced design,
the concrete is the first material to reach
its limiting stress under a gradually in-
creasing load. If the beam size is in ex-
cess of that needed for balanced design,
the steel is the first material to reach its
limiting stress.

STRESSES IN A RECTANGULAR BEAM

A beam of 2500-Ib/in? (17,237.5-kPa) concrete has a width of 12 in (304.8 mm) and an
effective depth of 19.5 in (495.3 mm). It is reinforced with one no. 9 and two no. 7 bars.
Determine the flexural stresses caused by a bending moment of 62 ft-kips (84.1 kN'm) (a)
without applying the basic equations of reinforced-concrete beam design; (b) by applying

the basic equations.
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Calculation Procedure:

1. Record the pertinent beam data
Thus £ = 2500 Ib/in? (17,237.5 kPa); .. n = 10; A, = 2.20 in? (14.194 cm?); nd, = 22.0 in®
(141.94 cm?). Then M = 62,000(12) = 744,000 in-Ib (84,057.1 N-m).

2. Transform the given section to an equivalent homogeneous
section, as in Fig. 13b

3. Locate the neutral axis of the member

The neutral axis coincides with the centroidal axis of the transformed section. To locate
the neutral axis, set the static moment of the transformed area with respect to its cen-
troidal axis equal to zero: 12(kd)*/2 — 22.0(19.5 —kd) = 0; kd = 6.82; d — kd = 12.68 in
(322.072 mm).

4. Calculate the moment of inertia of the transformed section

Then evaluate the flexural stresses by applying the stress equation: I = (¥4)(12)(6.82)° +
22.0(12.68)* = 4806 in* (200,040.6 cm*); 1. = Mkd/I = 744,000(6.82)/4806 = 1060 1b/in?
(7308.7 kPa); £;, = 10(744,000)(12.68)/4806 = 19,600 1b/in>

5. Alternatively, evaluate the stresses by computing the resultant

forcesCand T

Thus jd = 19.5 — 6.82/3 = 17.23 in (437.642 mm); C = T= MJjd = 744,000/17.23 = 43,200
1b (192,153.6 N). But C = ¥4 £,(6.82)12; .". £, = 1060 1b/in? (7308.7 kPa); and T= 2.20f;; ..
£, = 19,600 Ib/in? (135,142 kPa). This concludes part a of the solution. The next step con-
stitutes the solution to part b.

6. Compute pn and then apply the basic equations

in the proper sequence

Thus p = 4/(bd) = 2.20/[12(19.5)] = 0.00940; pn = 0.0940. Then by Eq. 30, £ ={0.188 +
(0.094)21°5 - 0.094 = 0.350. By Eq. 22,7 =1-0.350/3 = 0.883. By Eq. 23, f. = 2M/(kjbd?)
= 2(744,000)/[0.350(0.883)(12)(19.5)?] = 1060 Ib/in? (7308.7 kPa). By Eq. 25, f, =
MI(A, jd) = 744,000/[2.20(0.883)(19.5)] = 19,600 Ib/in? (135,142 kPa).

2" 12" T
(304.8mm) (304.8 mm) 3
€ | = €
£ NA. /) o 2SS £
o E oo lg
o - Rl
: 1 e B
= gs S
0 Ny
0 | | o5 |2
oo ?%EE%E—Q —L
} nAg=22.0in2 T
Ag=220in2 . (141.94 cm?) (¢) Resultant
(14.194 cm™) (b Tronsformed section forces

(a) Given section

FIGURE 13
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CAPACITY OF A RECTANGULAR BEAM

The beam in Fig. 14a is made of 2500-1b/in? (17,237.5-kPa) concrete. Determine the flex-
ural capacity of the member (a) without applying the basic equations of reinforced-
concrete beam design; (b) by applying the basic equations.

Calculation Procedure:

1. Record the pertinent beam data
Thus, £, = 2500 Ib/in? (17,237.5 kPa); .". £, aiow = 1125 1b/in? (7756.9 kPa); n = 10; 4, =
3.95 in? (25.485 cm?); nd, = 39.5 in? (254.85 cm?).

2. Locate the centroidal axis of the transformed section

Thus, 16(kd)?/2 — 39.5(23.5 - kd) = 0; kd = 8.58 in (217.93 mm); d — kd = 14.92 in
(378.968 mm).

3. Ascertain which of the two allowable stresses governs the
capacity of the member

For this purpose, assume that £, = 1125 Ib/in? (7756.9 kPa). By proportion, f, =
10(1125)(14.92/8.58) = 19,560 1b/in? (134,866 kPa) < 20,000 Ib/in? (137,900 kPa).
Therefore, concrete stress governs.

4. Calculate the allowable bending moment

Thus, jd = 23.5 — 8.58/3 = 20.64 in (524.256 mm); M = Cjd = /2(1125)(16)(8.58)(20.64) =
1,594,000 in‘lb (180,090.1 N'm); or M = Tjd = 3.95(19,560)(20.64) = 1,594,000 in'lb
(180,090.1 N-m). This concludes part a of the solution. The next step comprises part b.

8. Compute p and compare with p,, to identify

the controlling stress

Thus, from Table 1, p, = 0.0101; then p = 4/(bd) = 3.95/[16(23.5)] = 0.0105> p,, There-
fore, concrete stress governs.

Applying the basic equations in the proper sequence yields prn = 0.1050; by Eq. 30, k=
[0.210 + 0.1057]%5 - 0.105 = 0.365; by Eq. 24, M= (V6)(1125)(0.365)(2.635)(16)(23.5)
=1,593,000 in‘Ib (179,977.1 N-m). This agrees closely with the previously computed val-
ue of M.

'6"
(406.4 mm) fe
{1 c
858
NA. (217.93 mm)
235" 4 )
(378.968 mm) 20.64
(596.90 mm) 14.92" / / (524.256 mm)
T

L """ fo/n
S5 #8

(a) Section (b) Stresses aond resultamt forces

FIGURE 14



REINFORCED CONCRETE 2.23

DESIGN OF REINFORCEMENT IN A
RECTANGULAR BEAM OF GIVEN SIZE

A rectangular beam of 4000-1b/in? (27,580-kPa) concrete has a width of 14 in (355.6 mm)
and an effective depth of 23.5 in (596.9 mm). Determine the area of reinforcement if the
beam is to resist a bending moment of (a) 220 ft-kips (298.3 kN-m); (b) 200 ft-kips (271.2
kN‘m).

Calculation Procedure:

1. Calculate the moment capacity of this member

at balanced design

Record the following values: f; ..., = 1800 1b/in? (12,411 kPa); n = 8. From Table 1, ]b
0.860; K, = 324 Ib/in? (2234.0 kPa); M, = K, b &* = 324(14)(23.5)? = 2,505,000 in-lb
(283,014.9 N'm).

2. Determine which material will be stressed to capacity under
the stipulated moment

For part a, M =220,000(12) = 2,640,000 in'Ib (3,579,840 N-m) > M,. This result signifies
that the beam size is deficient with respect to balanced design, and the concrete will there-
fore be stressed to capacity.

3. Apply the basic equations in proper sequence to obtain A,

By Eq. 24, k(3 — k) = 6M/( f.bd?) = 6(2,640,000)/[1800(14)(23.5)?] = 1.138; k= 0.446. By
Eq. 29, p = K¥/[2n(1 — k)] = 0.4462/[16(0.554)] = 0.0224; A, = pbd = 0.0224(14)(23.5) =
7.37 in? (47.551 cm?).

4. Verify the result by evaluating the flexural capacity

of the member

For part b, compute A, by the exact method and then describe the approximate method
used in practice.

5. Determine which material will be stressed to capacity under
the stipulated moment

Here M = 200,000(12) = 2,400,000 in-1b (3,254,400 N-m) < M,,. This result signifies that
the beam size is excessive with respect to balanced design, and the steel will therefore be
stressed to capacity.

6. Apply the basic equations in proper sequence to obtain A,

By using Eq. 27, 123 — k)/(1 — k) = 6nM/(f,bd?) = 6(8)(2,400,000)/[20,000(14)(23.5)?] =
0.7448; k = 0.411. By Eq. 22, j = 1 —~ 0.411/3 = 0.863. By Eq. 25, 4, —M/(fjd) =
2,400,000/[20,000(0.863)(23.5)] = 5.92 in? (38. 196 cm?).

7. Verify the result by evaluating the flexural capacity

of this member

The value of j obtained in step 6 differs negligibly from the value j, = 0.860. Consequent-
ly, in those instances where the beam size is only moderately excessive with respect to
balanced design, the practice is to consider that j = j, and to solve Eq. 25 directly on this
basis. This practice is conservative, and it obviates the need for solving a cubic equation,
thus saving time.
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DESIGN OF A RECTANGULAR BEAM

A beam on a simple span of 13 ft (3.9 m) is to carry a uniformly distributed load, exclu-
‘sive of its own weight, of 3600 1b/lin ft (52,538.0 N/m) and a concentrated load of 17,000
1b (75,616 N) applied at midspan. Design the section, using £ = 3000 1b/in? (20,685 kPa).

Calculation Procedure:

1. Record the basic values associated with balanced design
There are two methods of allowing for the beam weight: (a) to determine the bending mo-
ment with an estimated beam weight included; (b) to determine the beam size required to
resist the external loads alone and then increase the size slightly. The latter method is used
here.

From Table 1, K, = 223 Ib/in? (1537.6 kPa); p, = 0.0128; j, = 0.874.

2. Calculate the maximum moment caused by the external loads
Thus, the maximum moment M, = “%PL + Yawl? = %(17,000)(13)(12) + “(3600)
(13)2(12) = 1,576,000 in-1b (178,056.4 N'm).

3. Establish a trial beam size

Thus, bd? = M/K,, = 1,576,000/223 = 7067 in? (115,828.1 cm?). Setting b = (¥)d, we find
5-14.7in (373.38 mm), d = 22.0 in (558.8 mm). Try 5= 15 in (381 mm) and d=22.5in
(571.5 mm), producing an overall depth of 25 in (635 mm) if the reinforcing bars may be
placed in one row.

4. Calculate the maximum bending moment with the beam weight
included; determine whether the trial section is adequate
Thus, beam weight = 15(25)(150)/144 = 391 1b/lin ft (5706.2 N/m); M, = (Y)(391)
(13)X(12) = 99,000 in'Ib (11,185.0 N'm); M = 1,576,000 + 99,000 = 1,675,000 in-1b
(189,241.5 N'm); M, = K,bd? = 223(15)(22.5)* = 1,693,000 in-Ib (191,275.1 N-m). The
trial section is therefore satisfactory because it has adequate capacity.
5. Design the reinforcement
Since the beam size is slightly excessive with respect to balanced design, the steel will be
stressed to capacity under the design load. Equation 25 is therefore suitable for this calcu-
lation. Thus, 4, = M/(f,jd ) = 1,675,000/[20,000(0.874)(22.5)] = 4.26 in? (27.485 cm?).
An alternative method of calculating 4, is to apply the value of p, while setting the
beam width equal to the dimension actually required to produce balanced design. Thus,
A;=0.0128(15)(1675)(22.5)/1693 = 4.27 in? (27.550 cm?).
Use one no. 10 and three no. 9 bars, for which 4, =4.27 in? (27.550 cm?) and b, =
12.0 in (304.8 mm).

6. Summarize the design
Thus, beam size is 15 x 25 in (381 x 635 mm); reinforcement is with one no. 10 and three
no. 9 bars.

DESIGN OF WEB REINFORCEMENT

A beam 14 in (355.6 mm) wide with an 18.5-in (469.9-mm) effective depth carries a uni-
form load of 3.8 kips/lin ft (55.46 N/m) and a concentrated midspan load of 2 kips (8.896
kN). The beam is simply supported, and the clear distance between supports is 13 ft (3.9
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m). Using f; = 3000 1b/in’ (20,685 kPa) and an allowable stress f; in the stirrups of 20,000
1b/in? (137,900 kPa), design web reinforcement in the form of vertical U stirrups.

Calculation Procedure:

1. Construct the shearing-stress diagram for half-span
The design of web reinforcement by the working-stress method parallels the design by the
ultimate-strength method, given earlier. Let v = nominal shearing stress, 1b/in? (kPa);
v, = shearing stress resisted by concrete; v’ = shearing stress resisted by web reinforce-
ment.

The ACI Code provides two alternative methods of computing the shearing stress that
may be resisted by the concrete. The simpler method is used here. This sets

v, =L1(f1)* (33)

The equation for nominal shearing stress is

(34

gl=

The shearing-stress diagram for a half-span is shown in Fig. 15. Establish the region
AD within which web reinforcement is required. Thus, v, = 1.1(3000)%3 = 60 Ib/in? (413.7
kPa). At the face of the support, ¥ = 6.5(3800) + 1000 = 25,700 1b (114,313.6 N); v =
25,700/[14(18.5)] = 99 1b/in? (682.6 kPa).

At midspan, ¥ = 1000 1b (4448 N); v = 4 1b/in? (27.6 kPa); slope of diagram = —(99 —
4)/78 =-1.22 Ib/(in%in) (-0.331 kPa/mm). At distance d from the face of the support, v =
99 — 18.5(1.22) = 76 1b/in? (524.02 kPa); v’ = 76 — 60 = 16 Ib/in? (110.3 kPa); AC = (99 -
60)/1.22 =32 in (812.8 mm); AD = AC + d =32 + 18.5 = 50.5 in (1282.7 mm).

2. Check the beam size for compliance with the Code
Thus, v, = 5(f2)*> — 274 1b/in® (1889.23 kPa) > 76 Ib/in? (524.02 kPa). This is accept-
able.

99 Ib/in2
(682.6 kPa) Note: All dimensions are to A.
2 76 Ib/in2
£ (524.02 kPa)
601b/in2
el (413.7 kPa)
3
£ ¢
°© '
£
€
S
2
A B Cc D ™
. ; 185" 32" 505"
ace o (469.9 mm) (1282.7 mm)
SupporT mm! (812.8 mm

(L/2=78"(1981.2mm)
FIGURE 15, Shearing-stress diagram.
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3. Select the stirrup size
Use the method given earlier in the ultimate-strength calculation procedure to select the
stirrup size, establish the maximum allowable spacing, and devise a satisfactory spacing,

CAPACITY OF A T BEAM

Determine the flexural capacity of the T beam in Fig. 16a, using £/ = 3000 Ib/in? (20,685
kPa).

Calculation Procedure:

1. Record the pertinent beam values

The neutral axis of a T beam often falls within the web. However, to simplify the analy-
sis, the resisting moment developed by the concrete lying between the neutral axis and the
flange is usually disregarded. Let 4, denote the flange area. The pertinent beam values are
Seattow = 1350 Ib/in? (9308.3 kPa); n = 9; k, = 0.378; nd, = 9(4.00) = 36.0 in? (232.3 cm?).
2. Tentatively assume that the neutral axis lies in the web

Locate this axis by taking static moments with respect to the top line. Thus 4,= 5(16) =
80 in? (516.2 cm?); kd = [80(2.5) + 36.0(21.5)]/(80 + 36.0) = 8.40 in (213.36 mm).

3. Identify the controlling stress
Thus k= 8.40/21.5 = 0.391 > k,; therefore, concrete stress governs.

4. Calculate the allowable bending moment

Using Fig. 16¢, we see £, = 1350(3.40)/8.40 = 546 1Ib/in? (3764.7 kPa); C = (80)(1350 +
546)=75,800 1b (337,158.4 N). The action line of this resultant force lies at the centroidal
axis of the stress trapezoid. Thus, z = (3/3)(1350 + 2 x 546)/(1350 + 546) =2.15 in (54.61
mm); or z = (%) (8.40 + 2 x 3.40)/(8.40 + 3.40) = 2.15 in (54.61 mm); M = Cjd =
75,800(19.35) = 1,467,000 in'Ib (165,741 N-m).

218"

16" 16" (54.61mm)
(406.4 mm) (406.4 mm) f.
D
| ea L ;7: g
5" (213.36 mm) | | NA. f
(127 mm) ! | 19.35"
215" o' - | I / (491.49 mm)
(546.11mm)  [5eg | (332.74 mm) I I /

1 — %éﬁsa-é—— .
e o fy/n
nA, =360 in?

A, =400 in? (232.3 cm?)
(25.8 cm?)

(a) Section
FIGURE 16

(b) Transformed section (c)Stresses and resultant forces
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5. Alternatively, calculate the allowable bending moment by
assuming that the flange extends to the neutral axis

Then apply the necessary correction. Let C; = resultant compressive force if the flange
extended to the neutral axis, Ib (N); C, = resultant compressive force in the imaginary ex-
tension of the flange, Ib (N). Then C; = 12(1350)(16)(8.40) = 90,720 Ib (403,522.6 N); C,
= 90,720(3.40/8.40)? = 14,860 1b (66,097.3 N); M = 90,720(21.5 — 8.40/3) — 14,860(21.5
—5~3.40/3) = 1,468,000 in‘1b (165,854.7 N-m).

DESIGN OF A T BEAM HAVING CONCRETE
STRESSED TO CAPACITY

A concrete girder of 2500-1b/in? (17,237.5-kPa) concrete has a simple span of 22 ft (6.7
m) and is built integrally with a 5-in (127-mm) slab. The girders are spaced 8 ft (2.4 m) on
centers; the overall depth is restricted to 20 in (508 mm) by headroom requirements. The
member carries a load of 4200 Ib/lin ft (61,294.4 N/m), exclusive of the weight of its web.
Design the section, using tension reinforcement only.

Calculation Procedure:

1. Establish a tentative width of web

Since the girder is built integrally with the slab that it supports, the girder and slab consti-
tute a structural entity in the form of a T beam. The effective flange width is established
by applying the criteria given in the ACI Code, and the bending stress in the flange is as-
sumed to be uniform across a line parallel to the neutral axis. Let 4,= area of flange in’
(cm?); b = width of flange, in (mm); b’ = width of web, in (mm); ¢ = thickness of flange,
in (mm); s = center-to-center spacing of girders.

To establish a tentative width of web, try 5’ = 14 in (355.6 mm). Then the weight of
web = 14(15)(150)/144 = 219, say 220 1b/lin ft (3210.7 N/m); w = 4200 + 220 = 4420
1b/lin ft (64,505.0 N/m).

Since two rows of bars are probably required, d =20 - 3.5 = 16.5 in (419.1 mm). The
critical shear value is V' = w(0.5L — d) = 4420(11 — 1.4) = 42,430 1b (188,728.7 N);
v = VIb'd = 42,430/[14(16.5)] = 184 1b/in* (1268.7 kPa). From the Code, ¥y — 5(£7)%° =
250 Ib/in® (1723.8 kPa). This is acceptable.

Upon designing the reinforcement, consider whether it is possible to reduce the width
of the web.

2. Establish the effective width of the flange according

to the Code

Thus, Y4L = ¥%(22)(12) = 66 in (1676.4 mm); 16t + b’ = 16(5) + 14 = 94 in (2387.6 mm);
s =8(12) =96 in (2438.4 mm); therefore b = 66 in (1676.4 mm).

3. Compute the moment capacity of the member

at balanced design

Compare the result with the moment in the present instance to identify the controlling
stress. With Fig. 16 as a guide, k,d = 0.360(16.5) = 5.94 in (150.876 mm); 4,= 5(66) =
330 in? (2129.2 em?); £, = 1125(0.94)/5.94 = 178 1b/in® (1227.3 kPa); C, = T, =
14(330)(1125 + 178) = 215,000 1b (956,320 N); z,, = (/3)(5.94 + 2 x 0.94)/(5.94 + 0.94) =
1.89 in (48.0 mm); jd = 14.61 in (371.094 mm); M, = 215,000(14.61) = 3,141,000 in‘ib
(354,870.2 N-m); M = (%)(4420)(22)%(12) = 3,209,000 in-1b (362,552.8 N-m).
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fe The beam size is slightly deficient with re-
| IB spect to balanced design, and the concrete will
c therefore be stressed to capacity under the stip-
ulated load. In Fig. 17, let 4OB represent the
stress line associated with balanced design and
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FIGURE 17. Stress diagram for T where T and T, = tensile force in present in-

beam. stance and at balanced design, respectively.
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5. Apply the equations from step 4

Thus, M — M, = 68,000 in-1b (7682.6 N-m). By Eq. 36, x = 68,000(6)(16.5)/[66(25)(49.5 —
10)] = 103 1b/in? (710.2 kPa); £, = 20,000 — 10(103) = 18,970 1b/in? (130,798.2 kPa). By
Eq. 35, T'= 215,000 + 66(25)(103)/33 = 220,200 Ib (979,449.6 N).

6. Design the reinforcement; establish the web width

Thus 4, =220,200/18,970 = 11.61 in? (74.908 cm?). Use five no. 11 and three no. 10 bars,
placed in two rows. Then 4, = 11.61 in? (74.908 cm?); b’ i, = 14.0 in (355.6 mm). It is
therefore necessary to maintain the 14-in (355.6-mm) width.

7. Summarize the design
Width of web: 14 in (355.6 mm); reinforcement: five no. 11 and three no. 10 bars.

8. Verify the design by computing the capacity of the member

Thus n4, = 116.1 in? (749.08 cm?); kd = [330(2.5) + 116.1(16.5)]/(330 +116.1)=6.14 in
(155.956 mm); k= 6.14/16.5 = 0.372> k,; therefore, concrete is stressed to capacity. Then
Js = 10(1125)(10.36)/6.14 = 18,980 Ib/in (130,867.1 kPa) z = (%5)6.14 + 2 x 1.14)/
6.14 + 1.14) = 1.93 in (49.022 mm); jd = 14.57 in (370.078 mm); M., =
11.61(18,980)(14.57) = 3,210,000 in-1b (362,665.8 N-m). This is acceptable.

DESIGN OF A T BEAM HAVING STEEL
STRESSED TO CAPACITY

Assume that the girder in the previous calculation procedure carries a total load, including
the weight of the web, of 4100 Ib/lin ft (59,835.0 N/m). Compute the area of reinforce-
ment.
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Calculation Procedure:

1. Identify the controlling stress

Thus, M = (Y)(4100)(22)%(12) = 2,977,000 in-Ib (336,341.5 N-m). From the previous cal-
culation procedure, M, = 3,141,000 in-Ib (354,870.2 N-m). Since M, > M, the beam size is
slightly excessive with respect to balanced design, and the steel will therefore be stressed
to capacity under the stipulated load.

2. Compute the area of reinforcement

As an approximation, this area may be found by applying the value of jd associated with
balanced design, although it is actually slightly larger. From the previous calculation pro-
cedure, jd = 14.61 in (371.094 mm). Then 4, = 2,977,000/{20,000(14.61)] = 10.19 in?
(65.746 cm?),

3. Verify the design by computing the member capacity

Thus, n4, = 101.9 in? (657.46 cm?); kd = (330 x 2.5 + 101.9 x 16.5)/(330 + 101.9) = 5.80
in (147.32 mm); z = (%3)(5.80 + 2 x 0.80)/(5.80 + 0.80) = 1.87 in (47.498 mm); jd = 14.63
in (371.602 mm); M, .., = 10.19(20,000)(14.63) = 2,982,000 in‘1b (336,906.4 N-m). This
is acceptable.

REINFORCEMENT FOR DOUBLY
REINFORCED RECTANGULAR BEAM

A beam of 4000-1b/in? (27,580-kPa) concrete that will carry a bending moment of 230
ft-kips (311.9 kN-m) is restricted to a 15-in (381-mm) width and a 24-in (609.6-mm) total
depth. Design the reinforcement.

Calculation Procedure:

1. Record the pertinent beam data
In Fig. 18, where the imposed moment is substantially in excess of that corresponding to
balanced design, it is necessary to reinforce the member in compression as well as ten-
sion. The loss in concrete area caused by the presence of the compression reinforcement
may be disregarded.

Since plastic flow generates a transfer of compressive stress from the concrete to the

(381mm)
15
(63.5 mm) (‘{67';9 kN)
25" - - ) ips_1I5.7 kip
A 4 —9- 8.59" 4——9 1ps
09" 2(8.186 mm) (514 6 kN)
(154.68 mm) N.A. ¥ .
3 205
191" |(520.7 mm)
{302.514 mm)
) . { 155.7 kips
o o o (692.6 kN)

FIGURE 18. Doubly reinforced beam.
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steel, the ACI Code provides that “in doubly reinforced beams and slabs, an effective
modular ratio of 2» shall be used to transform the compression reinforcement and com-
pute its stress, which shall not be taken as greater than the allowable tensile stress.” This
procedure is tantamount to considering that the true stress in the compression reinforce-
ment is twice the value obtained by assuming a linear stress distribution.

Let A, = area of tension reinforcement, in? (cm?); 4, = area of compression reinforce-
ment, in? (cm?); f, = stress in tension reinforcement, 1b/in? (kPa); £, = stress in compres-
sion reinforcement, lb/in? (kPa);-C’ = resultant force in compression reinforcement, b
(N); M, = moment capacity of member if reinforced solely in tension to produce balanced
design; M, = incremental moment capacity resulting from use of compression reinforce-
ment.

The data recorded for the beam are £, = 1800 1b/in” (12.411 kPa); » = 8; K, = 324 1b/in®
(2234.0 kPa); k, = 0.419; j, = 0.860; M = 230,000(12) = 2,760,000 in-1b (311,824.8 N-m).
2. Ascertain whether one row of tension bars will suffice
Assume tentatively that the presence of the compression reinforcement does not apprecia-
bly alter the value of j. Then jd = 0.860(21.5) = 18.49 in (469.646 mm); 4, = M/(f, jd) =
2,760,000/[20,000(18.49)] = 7.46 in? (48.132 cm?). This area of steel cannot be accom-
modated in the 15-in (381-mm) beam width, and two rows of bars are therefore required.

3. Evaluate the moments M, and M.

Thus, d =24 — 3.5 =20.5 in (520.7 mm); M, = K, bd? = 324(15)(20.5)> = 2,040,000 in‘lb
(230,479.2 N'm); M, = 2,760,000 — 2,040,000 = 720,000 in-1b (81,345.6 N-m).

4. Compute the forces in the reinforcing steel

For convenience, assume that the neutral axis occupies the same position as it would in
the absence of compression reinforcement. For M;, arm = j,d = 0.860(20.5) = 17.63 in
(447.802 mm); for M,, arm = 20.5 — 2.5 = 18.0 in (457.2 mm); T = 2,040,000/17.63 +
720,000/18.0 = 155,700 1b (692,553.6 N); C’ = 40,000 Ib (177,920 N).

5. Compute the areas of reinforcement and select the bars

Thus 4, = T/f, = 155,700/20,000 = 7.79 in? (50.261 cm?); kd = 0.419(20.5) = 8.59 in
(218.186 mm); d — kd = 11.91 in (302.514 mm). By proportion, f,’ = 2(20,000)
(6.09)/11.91 = 20,500 Ib/in? (141,347.5 kPa); therefore, set £,' = 20,000 1b/in? (137,900
kPa). Then, 4, = C'/f,’ = 40,000/20,000 = 2.00 in? (12.904 cm?). Thus tension steel: five
no. 11 bars, 4, = 7.80 in? (50.326 cm?); compression steel: two no. 9 bars, 4, = 2.00 in?
(12.904 cm?).

DEFLECTION OF A CONTINUOUS BEAM

The continuous beam in Fig. 19a and b carries a total load of 3.3 kips/lin ft (48.16 kN/m).
When it is considered as a T beam, the member has an effective flange width of 68 in
(1727.2 mm). Determine the deflection of the beam upon application of full live load, us-
ing f,' = 2500 Ib/in? (17,237.5 kPa) and £, = 40,000 Ib/in (275,800 kPa).

Calculation Procedure:
1. Record the areas of reinforcement

At support: 4, =4.43 in? (28.582 cm?) (top); 4, = 1.58 in? (10.194 cm?) (bottom). At cen-
ter: A, = 3.16 in? (20.388 cm?) (bottom).
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2. Construct the bending-moment diagram

Apply the ACI equation for maximum midspan moment. Refer to Fig. 19¢: M, =
(VB)wL'? = (1%4)3.3(22)? — 200 fi-kips (271.2 kKN-m); M, = (V16)WL'? = 100 ft-kips (135.6
kN-m); M; = 100 ft-kips (135.6 kN-m).

3. Determine upon what area the moment of inertia should

be based

Apply the criterion set forth in the ACI Code to determine whether the moment of inertia
is to be based on the transformed gross section or the transformed cracked section. At the
support pf, = 4.43(40,000)/[14(20.5)] = 617 > 500. Therefore, use the cracked section.

4. Determine the moment of inertia of the transformed cracked
section at the support

Refer to Fig. 194: nd, = 10(4.43) = 44.3 in? (285.82 cm?); (n ~ 1)4, = 9(1.58) = 14.2 in?
(91.62 cm?). The static moment with respect to the neutral axis is Q = — Y%(147) +
44.3(20.5-y) - 14.2(y — 2.5) = 0; y = 8.16 in (207.264 mm). The moment of inertia with
respect to the neutral axis is /; = (¥4)14(8.16)° + 14.2(8.16 — 2.5)% + 44.3(20.5 - 8.16)*> =
9737 in* (40.53 dm*).
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5. Calculate the moment of inertia of the transformed cracked
section at the center

Referring to Fig. 19¢ and assuming tentatively that the neutral axis falls within the flange,
we see nd, = 10(3.16) = 31.6 in? (203.88 cm?). The static moment with respect to the neu-
tral axis is O = %(68y?) — 31.6(20.5 — y) = 0; y = 3.92 in (99.568 mm). The neutral axis
therefore falls within the flange, as assumed. The moment of inertia with respect to the
neutral axis is I, = (¥4)68(3.92)3 + 31.6(20.5 — 3.92)2 = 10,052 in* (41.840 dm*).

6. Calculate the deflection at midspan
Use the equation

L7 SM M,
_E1(48“8) B9

where I = average moment of inertia, in* (dm*). Thus, I = (9737 + 10,052) = 9895 in*
(41.186 dm%); E = 145! x 33f7)"5 = 57,600(2500)%> = 2,880,000 1b/in? (19,857.6 MPa).
Then A = [222 x 1728/(2880 x 9895))(5 x 200/48 — 100/8) = 0.244 in (6.198 mm).

Where the deflection under sustained loading is to be evaluated, it is necessary to ap-
ply the factors recorded in the ACI Code.

Design of Compression Members by Ultimate-Strength Method

The notational system is P, = ultimate axial compressive load on member, Ib (N); P, =
ultimate axial compressive load at balanced design, 1b (N); P, = allowable ultimate axial
compressive load in absence of bending moment, 1b (N); M,, = ultimate bending moment
in member, Ib-in (N-m); M, = ultimate bending moment at balanced design; d' = distance
from exterior surface to centroidal axis of adjacent row of steel bars, in (mm); ¢ = overall
depth of rectangular section or diameter of circular section, in (mm).

A compression member is said to be spirally reinforced if the longitudinal reinforce-
ment is held in position by spiral hooping and tied if this reinforcement is held by means
of intermittent lateral ties.

The presence of a bending moment in a compression member reduces the ultimate ax-
ial load that the member may carry. In compliance with the ACI Code, it is necessary to
design for a minimum bending moment equal to that caused by an eccentricity of 0.05¢
for spirally reinforced members and 0.10¢ for tied members. Thus, every compression
member that is designed by the ultimate-strength method must be treated as a beam col-
umn. This type of member is considered to be in balanced design if failure would be char-
acterized by the simultaneous crushing of the concrete, which is assumed to occur when
€. = 0.003, and incipient yielding of the tension steel, which occurs when f; = f,. The ACI
Code set ¢ =0.75 for spirally reinforced members and ¢ = 0.70 for tied members.

ANALYSIS OF A RECTANGULAR MEMBER
BY INTERACTION DIAGRAM

A short tied member having the cross section shown in Fig. 20a is to resist an axial load
and a bending moment that induces compression at A and tension at B. The member is
made of 3000-1b/in? (20,685-kPa) concrete, and the steel has a yield point of 40,000 1b/in?
(275,800 kPa). By starting with ¢ = 8 in (203.2 mm) and assigning progressively higher
values to ¢, construct the interaction diagram for this member.
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for spirally reinforced members and 0.10¢ for tied members. Thus, every compression
member that is designed by the ultimate-strength method must be treated as a beam col-
umn. This type of member is considered to be in balanced design if failure would be char-
acterized by the simultaneous crushing of the concrete, which is assumed to occur when
€. = 0.003, and incipient yielding of the tension steel, which occurs when f; = f,. The ACI
Code set ¢ =0.75 for spirally reinforced members and ¢ = 0.70 for tied members.

ANALYSIS OF A RECTANGULAR MEMBER
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A short tied member having the cross section shown in Fig. 20a is to resist an axial load
and a bending moment that induces compression at A and tension at B. The member is
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Calculation Procedure:

1. Compute the value of c associated with balanced design

An interaction diagram, as the term is used here, is one in which every point on the curve
represents a set of simultaneous values of the ultimate moment and allowable ultimate ax-
ial load. Let €, and ez = strain of reinforcement at 4 and B, respectively; €, = strain of ex-
treme fiber of concrete; F4 and Fp = stress in reinforcement at 4 and B, respectively,
1b/in? (kPa); F; and Fj = resultant force in reinforcement at 4 and B, respectively; F, =
resultant force in concrete, Ib (N).

Compression will be considered positive and tension negative. For simplicity, disre-
gard the slight reduction in concrete area caused by the steel at 4.

Referring to Fig. 205, compute the value of ¢ associated with balanced design. Com-
puting P, and M, yields ¢,/d = 0.003/(0.003 + £,/E,) = 87,000/(87,000 + £); ¢, = 10.62 in
(269.748 mm). Then e, /€5 = (10.62 — 2.5)/(15.5 — 10.62) > 1; therefore, f; = f,; a, =
0.85(10.62) = 9.03 in (229.362 mm); F, = 0.85(3000)(124,) = 276,300 1b (1,228,982.4
N); F 4= 40,000(2.00) = 80,000 Ib ((355,840 N); Fz = — 80,000 1b (355,840 N); P, =
0.70(276,300) = 193,400 Ib (860,243.2 N). Also,

F-a) (Fy-Fp(t-2d) ]

> 2 (38)

M,=0.70 [
Thus, M, = 0.70(276,300(18 — 9.03)/2 + 160,000(6.5)] = 1,596,000 in-lb (180,316.1
N-m).
When ¢ > c;, the member fails by crushing of the concrete; when ¢ < ¢, it fails by
yielding of the reinforcement at line B.

2. Compute the value of c associated with incipient yielding

of the compression steel

Compute the corresponding values of P, and M,. Since €, and €5 are numerically equal,
the neutral axis lies at N. Thus, ¢ =9 in (228.6 mm); a = 0.85(9) = 7.65 in (194.31 mm);
F, = 30,600(7.65) = 234,100 Ib (1,041,276.8 N); F, = 80,000 Ib (355,840 N); Fj =
—-80,000 1b (- 355,840 N); P, = 0.70 (234,100) = 163,900 b (729,027.2 N); M, =
0.70(234,100 x 5.18 + 160,000 x 6.5) = 1,577,000 in'1b (178,169.5 N-m).

3. Compute the minimum value of c at which the entire concrete

area is stressed to 085f/
Compute the corresponding values of P, and M,. Thus, a = ¢t = 18 in (457.2 mm);
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¢ = 18/0.85 = 21.8 in (537.972 mm); fz = € E{c — d)/c = 87,000(21.18 — 15.5)/21.18 =
23,300 Ib/in® (160,653.5 kPa); F, = 30,600(18) = 550,800 1b (2,449,958.4 N); F,= 80,000
1b (355,840 N); Fz = 46,600 1b (207,276.8 N); P, = 0.70(550,800 + 80,000 + 46,600) =
474,200 1b (2,109,241.6 N); M, = 0.70(80,000 — 46,600)6.5 = 152,000 in'Ib (17,192.9
N-m).

4. Compute the value of ¢ at which M,, = 0; compute P,

The bending moment vanishes when Fp reaches 80,000 1b (355,840 N). From the calcula-
tion in step 3, £, = 87,000(c — d)/c = 40,000 Ib/in® (275,800 kPa); therefore, ¢ = 28.7 in
(728.98 mm); P, = 0.70(550,800 + 160,000) = 497,600 Ib (2,213,324.8 N).

5. Assign other values to ¢, and compute P, and M,

By assigning values to c ranging from 8 to 28.7 in (203. 2 to 728.98 mm), typical calcula-
tions are: when ¢ = 8 in (203.2 mm), f; = —40,000 Ib/in?> (275,800 kPa); f, =
40,000(5.5/7.5) = 29,300 1b/in? (202,023.5 kPa); a = 6.8 in (172.72 mm); F,, = 30,600(6.8)
= 208,100 Ib (925,628.8 N); P, = 0.70(208,100 + 58,600 — 80,000) = 130,700 Ib
(581,353.6 N); M, = 0.70 (208,100 x 5.6 + 138,600 x 6.5) = 1,446,000 in'Ib (163,369.1
N-m).

When ¢ = 10 in (254 mm), £, = 40,000 1b/in> (275,800 kPa); fz = —40,000 Ib/in?
(-275,800 kPa); a = 8.5 in (215.9 mm); F,, = 30,600(8.5) = 260,100 1b (1,156,924.8 N); P,
=0.70(260,100) = 182,100 1b (809,980 N); M, = 0.70(260,100 x 4.75 + 160,000 x 6.5) =
1,593,000 in‘lb (179,997.1 N'm).

When ¢ = 14 in (355.6 mm), f; = 87,000(14 — 15.5)/14 = —9320 1b/in*(—64,261.4kPa);
a = 119 in (302.26 mm); F, = 30,600(11.9) = 364,100 1b (1,619,516.8 N); P, =
0.70(364,100 + 80,000 — 18,600) = 297,900 1b (1,325,059.2 N); M, = 0.70(364,100 x
3.05 + 98,600 x 6.5) = 1,226,000 in-1b (138,513.5 N'm).

6. Plot the points representing computed values of P, and M,, in
the interaction diagram

Figure 21 shows these points. Pass a smooth curve through these points. Note that when
P, < P, areduction in M, is accompanied by a reduction in the allowable load P,

AXIAL-LOAD CAPACITY OF
RECTANGULAR MEMBER

The member analyzed in the previous calculation procedure is to carry an eccentric longi-
tudinal load. Determine the allowable ultimate load if the eccentricity as measured from N
is (@) 9.2 in (233.68 mm); (b) 6 in (152.4 mm).

Calculation Procedure:

1. Evaluate the eccentricity associated with balanced design

Let e denote the eccentricity of the load and e, the eccentricity associated with balanced
design. Then M, = P.e. In Fig. 21, draw an arbitrary radius vector OD; then tan 8 =
ED/OE = eccentricity corresponding to point D.

Proceeding along the interaction diagram from A to C, we see that the value of ¢ in-
creases and the value of e decreases. Thus, ¢ and e vary in the reverse manner. To evalu-
ate the allowable loads, it is necessary to identify the portion of the interaction diagram to
which each eccentricity applies.

From the computations of the previous calculation procedure, e, = M/P, =
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1,596,000/193,400 = 8.25 in (209.55 mm). This result discloses that an eccentricity of 9.2
in (233.68 mm) corresponds to a point on AB and an eccentricity of 6 in (152.4 mm) cor-
responds to a point on BC.

2. Evaluate P, when e = 9.2 in (233.68 mm)

It was found that ¢ = 9 in (228.6 mm) is a significant value. The corresponding value of e
is 1,577,000/163,900 = 9.62 in (244.348 mm). This result discloses that in the present in-
stance ¢ > 9 in (228.6 mm) and consequently f, = £,; F,,= 80,000 Ib (355,840 N); Fz =
-80,000 1b (-355,840 N); F,, = 30,600q; P,/0.70 = 30,600a; M,/0.70 = 30,600a(18 — a)/2
+ 160,000(6.5); e = M,,/P, = 9.2 in (233.68 mm). Solving gives a = 8.05 in (204.47 mm),
P,=172,400 1b (766,835.2 N).

3. Evaluate P, when e = 6 in (152.4 mm)
To simplify this calculation, the ACI Code permits replacement of curve BC in the inter-
action diagram with a straight line through B and C. The equation of this line is

u— toT ( o~ b) A {b ( 9)
By replacing M,, with P,e, the following relation is obtained:

P,

p=——
““ 1+ (P, - PyelM, (39a)

In the present instance, P, = 497,600 Ib (2,213,324.8 N); p, = 193,400 Ib (860,243.2 N);
M, = 1,596,000 in'1b (180,316.1 N-m). Thus P, = 232,100 1b (1,032,380 N).
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ALLOWABLE ECCENTRICITY OF A MEMBER

The member analyzed in the previous two calculation procedures is to carry an ultimate
longitudinal load of 150 kips (667.2 kIN) that is eccentric with respect to axis N. Deter-
mine the maximum eccentricity with which the load may be applied.

Calculation Procedure:

1. Express P, in terms of ¢, and solve for ¢

From the preceding calculation procedures, it is seen that the value of ¢ corresponding to
the maximum eccentricity lies between 8 and 9 in (203.2 and 228.6 mm), and therefore f
< f,- Thus fz = —40,000 lb/in? (-275,800 kPa); £, = 40,000(c — 2.5)/(15.5 - ¢); F, =
30,600(0.85¢) = 26,000¢; 150,000 = 0.70{26,000¢ + 80,000[(c — 2.5)/(15.5-¢c)—1]}; c=
8.60 in (218.44 mm).

2. Compute M, and evaluate the eccentricity

Thus, a = 7.31 in (185.674 mm); F, = 223,700 1b (995,017.6 N); f; = 35,360 1b/in’
(243,807.2 kPa); M, = 0.70(223,700 x 5.35 + 150,700 % 6.5) = 1,523,000 in-1b (172,068.5
N'm); e=M,/P,=10.15 in (257.81 mm).

Design of Compression Members
by Working-Stress Method

The notational system is as follows: 4, = gross area of section, in? (cm?); 4, = area of ten-
sion reinforcement, in? (cm?); 4,, = total area of longitudinal reinforcement, in? (cm?); D
= diameter of circular section, in (mm); p, = A,/A,; P = axial load on member, Ib (N); f, =
allowable stress in longitudinal reinforcement, Ib/in” (kPa); m = £,/(0.85f.").

The working-stress method of designing a compression member is essentially an
adaptation of the ultimate-strength method. The allowable ultimate loads and bending
moments are reduced by applying an appropriate factor of safety, and certain simplifica-
tions in computing the ultimate values are introduced.

The allowable concentric load on a short spirally reinforced column is P = 4,(0.25f" +

f.;pg)y or
P=0254,+f,A, (40)

where £, = 0.40f,, but not to exceed 30,000 Ib/in? (206,850 kPa).
The allowable concentric load on a short tied column is P = 0.854,(0.25(." + £, p,), or

P=02125f/4,+0.85/4,, 41)

A section of the ACI Code provides that P, may range from 0.01 to 0.08. However, in
the case of a circular column in which the bars are to be placed in a single circular row,
the upper limit of P, is often governed by clearance. This section of the Code also stipu-
lates that the minimum bar size to be used is no. 5 and requires a minimum of six bars for
a spirally reinforced column and four bars for a tied column.
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DESIGN OF A SPIRALLY
REINFORCED COLUMN

A short circular column, spirally reinforced, is to support a concentric load of 420 kips
(1868.16 kN). Design the member, using ;' = 4000 Ib/in” (27,580 kPa) and £, = 50,000
Ib/in? (344,750 kPa).

Calculation Procedure:

1. Assume p, = 0.025 and compute the diameter of the section
Thus, 0.25( = 1000 1b/in? (6895 kPa); £, = 20,000 Ib/in? (137,900 kPa). By Eq. 40, 4,
420/(1 + 20 x 0.025) = 280 in? (1806.6 cm?). Then D = (4,/0.785)°5 = 18.9 in (130 32
mm). Set D =19 in (131.01 mm), making 4, = 283 in® (1825.9 cm?).

2. Select the reinforcing bars

The load carried by the concrete = 283 kips (1258.8 kN). The load carried by the steel =
420 — 283 = 137 kips (609.4 kN). Then the area of the steel is 4,,, = 137/20 = 6.85 in?
(44.196 cm?). Use seven no. 9 bars, each having an area of 1 in? (6.452 cm?). Then 4, =
7.00 in? (45.164 cm?). The Reinforced Concrete Handbook shows that a 19-in (482.6-
mm) column can accommodate 11 no. 9 bars in a single row.

3. Design the spiral reinforcement

The portion of the column section bounded by the outer circumference of the spiral is
termed the core of the section. Let A, = core area, in? (cm?); D, = core diameter, in (mm);
a, = cross-sectional area of spiral wire, in? (cm?); g = pitch of spiral, in (mm); p, = ratio of
volume of spiral reinforcement to volume of core.

The ACI Code requires 1.5-in (38.1-mm) insulation for the spiral, with g restricted to a
maximum of D /6. Then D, =19 — 3 = 16 in (406.4 mm); 4. = 201 in? (1296.9 cm?); D /6
= 2.67 in (67.818 mm). Use a 2.5-in (63.5-mm) spiral pitch. Taking a 1-in (25.4-mm)
length of column,

volume of spiral  a,mD.J/g

ps=

volume of core ~ mD4
or
_ gD.p,
=7 42)
The required value of p,, as given by the ACI Code is
0.45(4, /4, - D f!
_ 0454, e @3)

bs= ];

or p, = 0.45(283/201 — 1)4/50 = 0.0147; a, = 2.5(16)(0.0147)/4 = 0.147 in? (0.9484 cm?).
Use ¥4-in (12.7-mm) diameter wire with a, = 0.196 in? (1.2646 cm?).

4. Summarize the design
Thus: column size: 19-in (482.6-mm) diameter; longitudinal reinforcement: seven no. 9
bars; spiral reinforcement: Y2-in (12.7-mm) diameter wire, 2.5-in (63.5-mm) pitch.
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ANALYSIS OF A RECTANGULAR MEMBER
BY INTERACTION DIAGRAM

A short tied member having the cross section shown in Fig. 22 is to resist an axial load
and a bending moment that induces rotation about axis N. The member is made of 4000-
Ib/in? (27,580-kPa) concrete, and the steel has a yield point of 50,000 Ib/in* (344,750
kPa). Construct the interaction diagram for this member.

13" Calculation Procedure:
(330.2 mm)
3 #10

1. Compute a and M
Consider a composite member of two materi-
als having equal strength in tension and com-
‘ ¢ 15" pression, the member being subjected to an
(50%0' )N (381 mm) axial load P and bending moment M that in-
mm duce the allowable stress in one or both ma-
terials. Let P, = allowable axial load in ab-
25" sence of bending moment, as computed by
3 #10— (63.5 mm) dividing the allowable ultimate load by a fac-
tor of safety; M, = allowable bending mo-
FIGURE 22 ment in absence of axial load, as computed
by dividing the allowable ultimate moment
by a factor of safety.
Find the simultaneous allowable values of P and M by applying the interaction equa-
tion

5"
(63.5mm)

P M
—+—=1 44
P, M @4
Alternate forms of this equation are
P M
= = = = 4
M M,(l Pa) P P,,(l Mf> (44a)
pP= Pally 44b
M+ P, M/P (445)

Equation 44 is represented by line 4B in Fig. 23; it is also valid with respect to a rein-
forced-concrete member for a certain range of values of P and M. This equation is not ap-
plicable in the following instances: (@) If M is relatively small, Eq. 44 yields a value of P
in excess of that given by Eq. 41. Therefore, the interaction diagram must contain line
CD, which represents the maximum value of P.

(b) If M is relatively large, the section will crack, and the equal-strength assumption
underlying Eq. 44 becomes untenable.

Let point E represent the set of values of P and M that will cause cracking in the ex-
treme concrete fiber. And let P, = axial load represented by point E; M, = bending mo-
ment represented by point E; M, = allowable bending moment in reinforced-concrete
member in absence of axial load, as computed by dividing the allowable ultimate moment
by a factor of safety. (M, differs from M; in that the former is based on a cracked section
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and the latter on an uncracked section. The subscript b as used by the ACI Code in the
present instance does not refer to balanced design. However, its use illustrates the analogy
with ultimate-strength analysis.) Let F denote the point representing M,,.

For simplicity, the interaction diagram is assumed to be linear between E and F. The
interaction equation for a cracked section may therefore be expressed in any of the fol-
“>wing forms:

M=+ (L ty-ny P =p, (e 45
=My () M-y Py ) (45a)
P= B M, 45b
M, —M,+P,MIP (455)
The ACI Code gives the following approximations: For spiral columns:
M,=0.124,,1,D, (46a)

where D = diameter of circle through center of longitudinal reinforcement. For symmet-
ric tied columns:

M,=0404,f,d-d) (46b)
For unsymmetric tied columns:
M,=0.404,f,jd (46¢)

For symmetric spiral columns:
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M,
o 0.43pmD, +0.14¢ 47a)
b
For symmetric tied columns:
M,
B " d0.67p,m +0.17) (47b)
b

For unsymmetric tied columns:

M, p'md-d)+0.1d

= 47c
Pb (p'—p)m+0‘6 ( )
where p’ = ratio of area of compression reinforcement to effective area of concrete. The
value of P, is taken as

P,=0.34f4,(1+p,m) (48)

The value of M is found by applying the section modulus of the transformed un-
cracked section, using a modular ratio of 2» to account for stress transfer between steel
and concrete engendered by plastic flow. (If the steel area is multiplied by 2n — 1, al-
lowance is made for the reduction of the concrete area.)

Computing P, and M, yields 4, = 260 in? (1677.5 cm?); 4, = 7.62 in* (49.164 cm?);

=7.62/260 = 0. 0293; m 50/[0 85(4)] = 14.7; pom = 0.431; n = 8; P, = 0.34(4)(260)
(1 431) =506 kips (2250 7 kN).

The section modulus to be applied in evaluating M, is found thus: 7 = (*/12)(13)(20)° +
7.62(15)(7.5)* = 15,100 in* (62.85 dm*); S = I/c = 15, 100/10 = 1510 in® (24,748.9 cm?),
M= 5f. = 1510(1.8) = 2720 in'kips (307.3 kN'm).

2. Compute P, and M,

By Eq. 47b, M,/P, = 17.5(0.67 x 0.431 +0.17) = 8.03 in (203.962 mm). By Eq. 44b, P, =
P,M,/(M; + 8.03P,) = 506 x 2720/(2720 + 8.03 x 506) = 203 kips (902.9 kN); M, =
8. 03(2()3) = 1630 inkips (184.2 kN'm).

3. Compute M,

By Eq. 46b, M, = 0.40(3.81)(50)(15) = 1140 in-kips (128.8 kN-m).

4. Compute the limiting value of P

As established by Eq. 41, P, = 0.2125(4)(260) + 0.85(20)(7.62) = 351 kips (1561.2
kN).

5. Construct the interaction diagram

The complete diagram is shown in Fig. 23.

AXIAL-LOAD CAPACITY OF A
RECTANGULAR MEMBER

The member analyzed in the previous calculation procedure is to carry an eccentric longi-
tudinal load. Determine the allowable load if the eccentricity as measured from N is (a) 10
in (254 mm); (b) 6 in (152.4 mm).
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Calculation Procedure:

1. Evaluate P when e = 10 in (254 mm)
As the preceding calculations show, the eccentricity corresponding to point E in the inter-
action diagram is 8.03 in (203.962 mm). Consequently, an eccentricity of 10 in (254 mm)
corresponds to a point on EF, and an eccentricity of 6 in (152.4 mm) corresponds to a
point on ED.

By Eq. 45b, P =203(1140)7(1140 — 1630 + 203 x 10) = 150 kips (667.2 kN).

2. Evaluate P when e = 6 in (152.4 mm)
By Eq. 44b, P = 506(2720)/(2720 + 506 x 6) = 239 kips (1063.1 kN).

Design of Column Footings

A reinforced-concrete footing supporting a single column differs from the usual type of
flexural member in the following respects: It is subjected to bending in all directions, the
ratio of maximum vertical shear to maximum bending moment is very high, and it carries
a heavy load concentrated within a small area. The consequences are as follows: The foot-
ing requires two-way reinforcement, its depth is determined by shearing rather than bend-
ing stress, the punching-shear stress below the column is usually more critical than the
shearing stress that results from ordinary beam action, and the design of the reinforcement
is controlled by the bond stress as well as the bending stress.

Since the footing weight and soil pressure are collinear, the former does not contribute
to the vertical shear or bending mo-
ment. It is convenient to visualize the
footing as being subjected to an upward L
load transmitted by the underlying soil A B
and a downward reaction supplied by
the column, this being, of course, an in-
version of the true form of loading. The
footing thus functions as an overhang-
ing beam. The effective depth of foot-
ing is taken as the distance from the top
surface to the center of the upper row of
bars, the two rows being made identical
to avoid confusion.

Refer to Fig. 24, which shows a
square footing supporting a square,
symmetrically located concrete column.
Let P = column load, kips (kN); p = net 0 ¢
soil pressure (that caused by the column {0) Plan
load alone), 1b/ft? (kPa); 4 = area of
footing, ft?> (m?); L = side of footing, ft
(m); h = side of column, in (mm); d =
effective depth of footing, ft (m); ¢ =
thickness of footing, ft (m); £, = bearing
stress at interface of column, Ib/in?
(kPa); v, = nominal shearing stress un-

A
v

der column, lb/in? (kPa); v, = nominal
shearing stress caused by beam action,
Ib/in? (kPa); b, = width of critical sec-

(b) Elevation

FIGURE 24
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tion for vy, ft (m); ¥, and ¥, = vertical shear at critical section for stresses v, and v,, re-
spectively.

In accordance with the ACI Code, the critical section for v; is the surface GHJK, the
sides of which lie at a distance d/2 from the column faces. The critical section for v, is
plane LM, located at a distance d from the face of the column. The critical section for
bending stress and bond stress is plane EF through the face of the column. In calculating
v,,-f, and u, no allowance is made for the effects of the orthogonal reinforcement.

DESIGN OF AN ISOLATED
SQUARE FOOTING

A 20-in (508-mm) square tied column reinforced with eight no. 9 bars carries a concentric
load of 380 kips (1690.2 kN). Design a square footing by the working-stress method us-
ing these values: the allowable soil pressure is 7000 Ib/ft? (335.2 kPa); £ = 3000 Ib/in?
(20,685 kPa); and £, = 20,000 1b/in? (137,900 kPa).

Calculation Procedure:

1. Record the allowable shear, bond, and bearing stresses
From the ACI Code table, v, = 110 Ib/in? (758.5 kPa); v, = 60 1b/in? (413.7 kPa); f, =
1125 1b/in? (7756.9 kPa); u = 4.8(f,)*5/bar diameter = 264/bar diameter.

2. Check the bearing pressure on the footing
Thus, f,, = 380/[20(20)] = 0.95 kips/in® (7.258 MPa) < 1.125 kips/in? (7.7568 MPa). This
is acceptable.

3. Establish the length of footing

For this purpose, assume the footing weight is 6 percent of the column load. Then 4 =
1.06(380)/7 = 57.5 fi (5.34 in?). Make L=7 ft 8 in = 7.67 £t (2.338 m); 4 = 58.8 fi* (5.46
m?),

4. Determine the effective depth as controlled by v,

Apply

(4v, + p)d + h(4v, + 2p)d = p(4 - i?) (49)

Verify the result after applying this equation. Thus p = 380/58.8 = 6.46 kips/ft®> (0.309
MPa); = 0.11(144) = 15.84 kips/ft> (0.758 MPa); 69.84% + 127.1d = 361.8; d = 1.54 ft
(0.469 m). Checking in Fig. 24, we see GH = 1.67 + 1.54 = 3.21 ft (0.978 m); V, =
6.46(58.8 — 3.212) = 313 kips (1392.2 kN); v, = Vi/(b,d) = 313/[4(3.21)(1.54)] = 15.83
kips/ft? (0.758 MPa). This is acceptable.

5. Establish the thickness and true depth of footing

Compare the weight of the footing with the assumed weight. Allowing 3 in (76.2 mm) for
insulation and assuming the use of no. § bars, we see that =d + 4.5 in (114.3 mm). Then
t=1.54(12) + 4.5=23.0 in (584.2 mm). Make # = 24 in (609.6 mm); d =19.5in=1.63 ft
(0.496 m). The footing weight = 58.8(2)(0.150) = 17.64 kips (1384.082 kN). The as-
sumed weight = 0.06(380) = 22.8 kips (101.41 kN). This is acceptable.

6. Check v,
In Fig. 24, AL = (7.67 — 1.67)/2 — 1.63 = 1.37 ft (0.417 m); V, = 380(1.37/7.67) =
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67.9 kips (302.02 kN); v, = V,/(Ld) = 67,900/[92(19.5)] = 38 1b/in* (262.0 kPa) < 60
Ib/in? (413.7 kPa). This is acceptable.

7. Design the reinforcement

In Fig. 24, EA = 3.00 £t (0.914 m); V= 380(3.00/7.67) = 148.6 kips (666.97 kN); Mpr=
148.6(14)(3.00)(12) = 2675 in-kips (302.22 kN-m); 4, = 2675/[20(0.874)(19.5)] = 7.85 in?
(50.648 cm?). Try 10 no. 8 bars each way. Then 4, = 7.90 in? (50.971 cm?); 30 =31.4 in
(797.56 mm); u = Vgo/Sojd = 148,600/[31.4(0.874)(19.5)] = 278 Ib/in? (1916.81 kPa);
Ugiow = 264/1 = 264 1b/in? (1820.3 kPa).

The bond stress at £F is slightly excessive. However, the ACI Code, in sections based
on ultimate-strength considerations, permits disregarding the local bond stress if the aver-
age bond stress across the length of embedment is less than 80 percent of the allowable
stress. Let L, denote this length. Then L, = E4 — 3 = 33 in (838.2 mm); 0.80u,,,, = 211
Ib/in? (1454.8 kPa); u,, = 4, f,/(L.20) = 0.79(20,000)/[33(3.1)] = 154 Ib/in? (1061.8 kPa).
This is acceptable.

8. Design the dowels to comply with the Code

The function of the dowels is to transfer the compressive force in the column reinforcing
bars to the footing. Since this is a tied column, assume the stress in the bars is
0.85(20,000) = 17,000 Ib/in? (117,215.0 kPa). Try eight no. 9 dowels with £, = 40,000
1b/in? (275,800.0 kPa). Then u = 264/(9/8) =

235 Ib/in? (1620.3 kPa); L, = 1.00(17,000)/

[235(3.5)] = 20.7 in (525.78 mm). Since the 7'-g"
footing can provide a 21-in (533.4-mm) em- (2338 m)
bedment length, the dowel selection is satis- —
factory. Also, the length of lap = 20(9/8) = I_,o_ #8 each way
22.5 in (571.5 mm); length of dowels = 20.7 r 722" lom j‘
+22.5 = 43.2, say 44 in (1117.6 mm). The (2.184 m)
footing is shown in Fig. 25, .y N L I
7-8 1-87] |»
(2.338m) I‘Q!’OBM) eoe
I-g" I
COMBINED FOOTING DESIGN (0.508 m)

An 18-in (457.2-mm) square exterior column
and a 20-in (508.0-mm) square interior col-
umn carry loads of 250 kips (1112 kN) and

A
A~
I

370 kips (1645.8 kN), respectively. The col- | g,_’g,? dowels
umn centers are 16 ft (4.9 m) apart, and the | S (1147 m)
1

footing cannot project beyond the face of the 1
exterior column. Design a combined rectan- 2'-0" L—u»

gular footing by the working-stress method, ©6ml [v—v v Yy v
using £’ = 3000 Ib/in? (20,685.0 kPa), f; =

20,000 Ib/in? (137,900.0 kPa), and an aliow- ~ FIGURE 25

able soil pressure of 5000 Ib/in? (239.4 kPa).

Calculation Procedure:

1. Establish the length of footing, applying the criterion
of uniform soil pressure under total live and dead loads
In many instances, the exterior column of a building cannot be individually supported be-



2.44 REINFORCED AND PRESTRESSED CONCRETE ENGINEERING AND DESIGN

L=2060' (6.278m)
078! 160' (4.9 m) 385'
(0.228m)| |t ¢ (1L173m)
A CE G J L N Q
)
298 250
(0.786m) v ©763m)| o .
@1 " Z , SwEY S .
o + 67 W=6.67
(0.509 m) (2.033m)
1.5'
(0.457 m)
Bl I DF HK M P R
x=955'
(2.910 m)
(o) Plan of footing
+229.2 kips (+1.02 MN)
y=83!'
(2.532m)
C,0 L,M Q,R
A,B NS
-90.8 kips
Slope =301 kips / ft (-403 9 kN)
-2049 kips (439.16 kN/m)
(=911.4 kN) (b) Sheor diagram
w=75" (+214.79kNem)
2.286m) +1584 ft l;lps
-851.4 ft ¢ kips
(-1154.49 kNem)
(¢) Bending-moment diagram
FIGURE 26

cause the required footing would project beyond the property limits. It then becomes nec-
essary to use a combined footing that supports the exterior column and the adjacent interi-
or column, the footing being so proportioned that the soil pressure is approximately uni-
form.

The footing dimensions are shown in Fig. 264, and the reinforcement is seen in Fig.
27. It is convenient to visualize the combined footing as being subjected to an upward
load transmitted by the underlying soil and reactions supplied by the columns. The mem-
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ber thus functions as a beam that overhangs one support. However, since the footing is
considerably wider than the columns, there is a transverse bending as well as longitudinal
bending in the vicinity of the columns. For simplicity, assume that the transverse bending
is confined to the regions bounded by planes 4B and EF and by planes GH and NP, the
distance m being #/2 or d/2, whichever is smaller.

In Fig. 264, let Z denote the location of the resultant of the column loads. Then x =
370(16)/(250 + 370) = 9.55 ft (2.910 m). Since Z is to be the centroid of the footing, L =
2(0.75 + 9.55) = 20.60 ft (6.278 m). Set L = 20 ft 8 in (6.299 m), but use the value 20.60 ft
(6.278 m) in the stress calculations.

2. Construct the shear and bending-moment diagrams
The net soil pressure per foot of length = 620/20.60 = 30.1 kips/lin ft (439.28 kN/m).
Construct the diagrams as shown in Fig. 26.

3. Establish the footing thickness
Use

(Pv, +0.17VL + Pp'yd~0.17Pd? - VLp' (50)

where P = aggregate column load, kips (kN); ¥ = maximum vertical shear at a column
face, kips (kN); p’ = gross soil pressure, kips/ft* (MPa).

Assume that the longitudinal steel is centered 3% in (88.9 mm) from the face of the
footing. Then P = 620 kips (2757.8 kN); V' =229.2 kips (1019.48 kN); v, = 0.06(144) =
8.64 kips/ft? (0.414 MPa); 9260d — 105.4d° = 23,608; d = 2.63 ft (0.801 m); t = 2.63 +
029=292ft Sett=2ft 11 in (0.889 m); d=2 ft 7% in (0.800 m).
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4. Compute the vertical shear at distance d from the column face
Establish the width of the footing. Thus ¥ = 229.2 — 2.63(30.1) = 150.0 kips (667.2 kN);
v = VIWd), or W = Vi(vd) = 150/{8.64(2.63)] = 6.60 ft (2.012 m). Set W =6 ft 8 in
(2.032 m).

5. Check the soil pressure

The footing weight = 20.67(6.67)(2.92)(0.150) = 60.4 kips (268.66 kN); p’ = (620 +
60.4)/[(20.67)(6.67)] = 4.94 kips/fi? (0.236 MPa) < 5 kips/ft? (0.239 MPa). This is accept-
able.

6. Check the punching shear

Thus, p = 4.94 — 2.92(0.150) = 4.50 kips/ft*> (0.215 MPa). At C1: b,= 18 +31.5+2 (18 +

15.8) = 117 in (2971.8 mm); ¥ = 250 — 4.50(49.5)(33.8)/144 = 198 kips (880.7 kN); v; =

198,000/{117(31.5)] = 54 1b/in? (372.3 kPa) < 110 1b/in? (758.5 kPa); this is acceptable.
At C2: b, =4(20 + 31.5) = 206 in (5232.4 mm); V=370 — 4.50(51.5)*/144 = 287 kips

(1276.6 kN); v, = 287,000/[206(31.5)] = 44 Ib/in? (303.4 kPa). This is acceptable.

7. Design the longitudinal reinforcement for negative moment
Thus, M = 851,400 ft1b = 10,217,000 in'1b (1,154,316.6 N-m); M, = 223(80)31.5)?
17,700,000 in-1b (1,999,746.0 N-m). Therefore, the steel is stressed to capacity, and 4,
10,217,000/{20,000(0.874)(31.5)] = 18.6 in? (120.01 cm?). Try 15 no. 10 bars with 4,
19.1 in? (123.2 cm?); Zo = 59.9 in (1521.46 mm).

The bond stress is maximum at the point of contraflexure, where ¥ = 15.81(30.1)
250 =225.9 kips (1004.80 kN); u = 225,900/[59.9(0.874)(31.5)] = 137 1b/in? (944.6 kPa);
Ugiow = 3.4(3000)°5/1.25 = 149 1b/in? (1027.4 kPa). This is acceptable.

8. Design the longitudinal reinforcement for positive moment

For simplicity, design for the maximum moment rather than the moment at the face of the
column. Then 4, = 158,400(12)/[20,000(0.874)(31.5)] = 3.45 in? (22.259 cm?). Try six
no. 7 bars with 4, = 3.60 in? (23.227 cm?); 30 = 16.5 in (419.10 mm). Take LM as the
critical section for bond, and u = 90,800/[16.5(0.874)(31.5)] = 200 1b/in? (1379.0 kPa);
Uyow = 4.8(3000)%5/0.875 — 302 1b/in? (2082.3 kPa). This is acceptable.

9. Design the transverse reinforcement under the interior column
For this purpose, consider member GNPH as an independent isolated footing. Then Vg, =
370(2.50/6.67) = 138.8 kips (617.38 kN); Mg = ¥%(138.8)(2.50)(12) = 2082 in-kips
(235.22 kN'm). Assume d = 35 - 4.5 = 30.5 in (7747 mm); 4, = 2,082,000/
[20,000(0.874)(30.5)] = 3.91 in? (25.227 cm?). Try seven no. 7 bars; 4, = 4.20 in?
(270.098 cm?); S0 = 19.2 in (487.68 mm); u = 138,800/[19.2(0.874)(30.5)] = 271 1b/in?
(1868.5 kPa); u,,,, = 302 Ib/in? (2082.3 kPa). This is acceptable.

Since the critical section for shear falls outside the footing, shearing stress is not a cri-
terion in this design.

10. Design the transverse reinforcement under the exterior
column; disregard eccentricity

Thus, ¥y, = 250(2.58/6.67) = 96.8 kips (430.57 kN); M, = 14(96.8)(2.58)(12) = 1498
inkips (169.3 kN-m); 4, = 2.72 in? (17.549 ¢cm?). Try five no. 7 bars; 4, = 3.00 in?
(19.356 cm?); 2o — 13.7 in (347.98 mm); u = 96,800/[13.7 (0.874)(31.5)] = 257 Ib/in®
(1772.0 kPa). This is acceptable.

Cantilever Retaining Walls

Retaining walls having a height ranging from 10 to 20 ft (3.0 to 6.1 m) are generally built
as reinforced-concrete cantilever members. As shown in Fig. 28, a cantilever wall com-
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M = (/) Cwy*(y + 3h) (52

DESIGN OF A CANTILEVER
RETAINING WALL

Applying the working-stress method, design a reinforced-concrete wall to retain an earth
bank 14 ft (4.3 m) high. The top surface is horizontal and supports a surcharge of 500
1b/ft? (23.9 kPa). The soil weighs 130 Ib/ft3 (20.42 kN/m3), and its angle of internal fric-
tion is 35°; the coefficient of friction of soil and concrete is 0.5. The allowable soil pres-
sure is 4000 1b/ft? (191.5 kPa); £, = 3000 Ib/in? (20,685 kPa) and f, = 40,000 Ib/in’
(275,800 kPa). The base of the structure must be set 4 ft (1.2 m) below ground level to
clear the frost line.

Calculation Procedure:

1. Secure a trial section of the wall

Apply these relations: a = 0.60H; b = 8 in (203.2 mm); c =d = b+ 0.045k; f = a/3 — c/2.
The trial section is shown in Fig. 294, and the reinforcement is shown in Fig. 30. As

the calculation will show, it is necessary to provide a key to develop the required resist-
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ance to sliding. The sides of the key are sloped to ensure that the surrounding soil will re-
main undisturbed during excavation.

2. Analyze the trial section for stability

The requirements are that there be a factor of safety (FS) against sliding and overturning
of at least 1.5 and that the soil pressure have a value lying between 0 and 4000 1b/ft? (0
and 191.5 kPa). Using the equation developed later in this handbook gives A = sur-
charge/soil weight = 500/130 = 3.85 ft (1.173 m); sin 35° = 0.574; tan 35° = 0.700; C, =
0.271; C, = 3.69; C,w = 35.2 Ib/ft3 (5.53 kN/m®); C,w = 480 1b/ft* (75.40 kKN/m?); T 4p =
14(35.2)18(18 + 2 x 3.85) = 8140 Ib (36,206.7 N); M5 = (V/s)35.2(18)*(18 + 3 x 3.85) =
56,200 ft Ib (76,207.2 N-m).

The critical condition with respect to stability is that in which the surcharge extends to
G. The moments of the stabilizing forces with respect to the toe are computed in Table 2.
In Fig. 29¢, x = 81,030/21,180 = 3.83 ft (1.167 m); ¢ = 5.50 — 3.83 = 1.67 ft (0.509 m).
The fact that the resultant strikes the base within the middle third attests to the absence of
uplift. By f= (PIAX1 % 6e,/d,  6e,/d,), p, = (21,180/11)(1 + 6 x 1.67/11) = 3680 1b/ft>
(176.2 kPa); p, = (21,180/11)(1 — 6 x 1.67/11) = 171 Ib/ft> (8.2 kPa). Check: x =
(11/3)(3680 + 2 x 171)/(3680 + 171) = 3.83 ft (1.167 m), as before. Also, p, = 2723 Ib/ft?
(130.4 kPa); p, = 2244 1b/fi> (107.4 kPa); FS against overturning = 137,230/56,200 =
2.44. This is acceptable.

Lateral displacement of the wall produces sliding of earth on earth to the left of C and
of concrete on earth to the right of C. In calculating the passive pressure, the layer of earth
lying above the base is disregarded, since its effectiveness is unknown. The resistance to
sliding is as follows: friction, 4 to C (Fig. 29): (3680 + 2723)(3)(0.700) = 6720 b
(29,890.6 N); friction, C to B: (2723 + 171)(8)(0.5) = 5790 1b (25,753.9 N); passive
earth pressure: %5(480)(2.75)% = 1820 Ib (8095.4 N). The total resistance to sliding is the
sum of these three items, or 14,330 1b (63,739.8 N). Thus, the FS against sliding is
14,330/8140 = 1.76. This is acceptable because it exceeds 1.5. Hence the trial section is
adequate with respect to stability.

3. Calculate the soil pressures when the surcharge extends to H
Thus W, = 500(6.5) = 3250 1b (14,456 N); W = 21,180 + 3250 = 24,430 1b (108,664.6
N); M, = 81,030 + 3250(7.75) = 106,220 ft-Ib (144,034.3 N'm); x = 106,220/24,430 =
4,35 ft (1.326 m); e = 1.15 t (0.351 m); p, = 3613 Ib/ft* (173 kPa); p, = 828 Ib/ft* (39.6
kPa); p, = 2853 1b/ft? (136.6 kPa); p, = 2474 1b/f (118.5 kPa).

TABLE 2. Stability of Retaining Wall

Force, Ib (N) Arm, ft (m) Moment, ft-1b (N-m)

W, 1.5(11)(150) = 2,480 (11,031.0) 5.50 (1.676) 13,640 (18,495.8)
W, 0.67(16.5)(150) = 1,650 (7,339.2) 3.33(1.015) 5,500 (7,458.0)
W, 0.5(0.83)(16.5)(150) = 1,030 (4,581.4) 3.95(1.204) 4,070 (5,518.9)
W, 1.25(1.13)(150) = 210 (934.1) 3.75(1.143) 790 (1,071.2)
W5 0.5(0.83)(16.5)(130) = 890 (3,958.7) 423 (1.289) 3,760  (5,098.6)
W 6.5(16.5)(130) = 13,940 (62,005.1) 7.75(2.362) 108,000 (146,448.0)
W, 2.5(3)(130) = 980 (4,359.1) 1.50 (0.457) 1,470 (1993.3)
Total 21,180 (94,208.6) 137,230 (186,083.8)
Overturning moment 56,200 (76,207.2)

Net moment about 4 81,030 (109,876.6)
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4. Design the stem
At the base of the stem, y = 16.5 ft (5.03 m) and d = 18 — 3.5 = 14.5 in (368.30 mm);
Tep=70301b (31,269.4 N); M= 538,000 in-1b (60,783.24 N-m). The allowable shear at
a distance d above the base is ¥, = vbd = 60(12)(14.5) = 10,440 1b (46,437.1 N). This
is acceptable. Also, M, = 223(12)(14.5)? = 563,000 in‘Ib (63,607.74 N-m); therefore, the
steel is stressed to capacity, and 4, = 538,000/[20,000(0.874)(14.5)] = 2.12 in? (13.678
cm?). Use no. 9 bars 5% in (139.70 mm) on centers. Thus, 4, = 2.18 in? (14.065 cm?);
20 = 7.7 in (195.58/mm); u = 7030/[7.7(0.874)(14.5)] = 72 Ib/in? (496.5 kPa); u
235 1b/in? (1620.3 kPa). This is acceptable.

Alternate bars will be discontinued at the point where they become superfluous. As the

allow —
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following calculations demonstrate, the theoretical cutoff point lies at y = 11 fi 7 in (3.531
m), where M = 218,400 inlb (24,674.8 N'm); d = 4.5 + 10(11.58/16.5) = 11.52 in
(292.608 mm); 4, = 218,400/[20,000 (0.874)(11.52)] = 1.08 in? (6.968 cm?). This is ac-
ceptable. Also, T'= 3930 Ib (17,480.6 N); u = 101 Ib/in? (696.4 kPa). This is acceptable.
From the ACI Code, anchorage = 12(9/8) = 13.5 in (342.9 mm).

The alternate bars will therefore be terminated at 6 ft 1 in (1.854 m) above the top of
the base. The Code requires that special precautions be taken where more than half the
bars are spliced at a point of maximum stress. To circumvent this requirement, the short
bars can be extended into the footing; therefore only the long bars require splicing.
For the dowels, uyo,, = 0.75(235) = 176 1b/in® (1213.5 kPa); length of lap = 1.00
(20,000)/[176(3.5)] = 33 in (838.2 mm).

5. Design the heel

Let ¥ and M denote the shear and bending moment, respectively, at section D. Case 1:
surcharge extending to G—downward pressure p = 16.5(130) + 1.5(150) = 2370 1b/fi2
(113.5 kPa); V= 6.5[2370 - }2(2244 + 171)] = 7560 Ib (33,626.9 N); M = 12(6.5)% [ x
2370 - /6(2244 + 2 x 171)] = 383,000 in'Ib (43,271.3 N-m).
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Case 2: surcharge extending to H—p = 2370 + 500 = 2870 Ib/ft?> (137.4 kPa); V =
6.5[2870 — 4(2474 + 828)] = 7920 1b (35,228.1 N) < Vow; M = 12(6.5)* [ x 2870 —
16(2474 + 2 x 828)] = 379,000 in-1b (42,819.4 N'm); 4, = 2.12(383/538) = 1.51 in? (9.742
cm?).

To maintain uniform bar spacing throughout the member, use no. 8 bars 5% in (139.7
mm) on centers. In the heel, tension occurs at the top of the slab, and 4, = 1.72 in? (11.097
cm?); 30 = 6.9 in (175.26 mm); u = 91 1b/in? (627.4 kPa); u,p,,, = 186 1b/in? (1282.5 kPa).
This is acceptable.

6. Design the toe

For this purpose, assume the absence of backfill on the toe, but disregard the minor modi-
fication in the soil pressure that results. Let ¥ and M denote the shear and bending mo-
ment, respectively, at section C (Fig. 29). The downward pressure p = 1.5(150) = 225
1b/ft? (10.8 kPa).

Case 1: surcharge extending to G (Fig. 29—V = 3[12(3680 + 2723) — 225] = 8930 1b
(39,720.6 N); M = 12(3)*[(Vs)(2723 + 2 x 3680) — ¥(225)] = 169,300 in'lb (19,127.5
N-m).

Case 2: surcharge extending to H (Fig. 29—V = 9020 1b (40,121.0 N) < Vjjou; M =
169,300 inib (19,127.5 N'm); 4, = 2.12(169,300/538,000) = 0.67 in? (4.323 cm?). Use
no. 5 bars 5% in (139.7 mm) on centers. Then 4, = 0.68 in? (4.387 cm?); o = 4.3 in
(109.22 mm); u = 166 1b/in? (1144.4 kPa); u,,,, = 422 1b/in? (2909.7 kPa). This is accept-
able. '

The stresses in the key are not amenable to precise evaluation. Reinforcement is
achieved by extending the dowels and short bars into the key and bending them.

In addition to the foregoing reinforcement, no. 4 bars are supplied to act as tempera-
ture reinforcement and spacers for the main bars, as shown in Fig. 30.

PART 2
PRESTRESSED CONCRETE

Prestressed-concrete construction is designed to enhance the suitability of concrete as a
structural material by inducing prestresses opposite in character to the stresses resulting
from gravity loads. These prestresses are created by the use of steel wires or strands,
called tendons, that are incorporated in the member and subjected to externally applied
tensile forces. This prestressing of the steel may be performed either before or after pour-
ing of the concrete. Thus, two methods of prestressing a concrete beam are available: pre-
tensioning and posttensioning.

In pretensioning, the tendons are prestressed to the required amount by means of hy-
draulic jacks, their ends are tied to fixed abutments, and the concrete is poured around the
tendons. When hardening of the concrete has advanced to the required state, the tendons
are released. The tendons now tend to contract longitudinally to their original length and
to expand laterally to their original diameter, both these tendencies being opposed by the
surrounding concrete. As a result of the longitudinal restraint, the concrete exerts a tensile
force on the steel and the steel exerts a compressive force on the concrete. As a result of
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the lateral restraint, the tendons are deformed to a wedge shape across a relatively short
distance at each end of the member. It is within this distance, termed the transmission
length, that the steel becomes bonded to the concrete and the two materials exert their pre-
stressing forces on each other. However, unless greater precision is warranted, it is as-
sumed for simplicity that the prestressing forces act at the end sections.

The tendons may be placed either in a straight line or in a series of straight-line seg-
ments, being deflected at designated points by means of holding devices. In the latter
case, prestressing forces between steel and concrete occur both at the ends and at these
deflection points.

In posttensioning, the procedure usually consists of encasing the tendons in metal or
rubber hoses, placing these in the forms, and then pouring the concrete. When the con-
crete has hardened, the tendons are tensioned and anchored to the ends of the concrete
beam by means of devices called end anchorages. If the hoses are to remain in the mem-
ber, the void within the hose is filled with grout. Posttensioning has two important advan-
tages compared with pretensioning: It may be performed at the job site, and it permits the
use of parabolic tendons.

The term at transfer refers to the instant at which the prestressing forces between steel
and concrete are developed. (In posttensioning, where the tendons are anchored to the
concrete one at a time, in reality these forces are developed in steps.) Assume for simplic-
ity that the tendons are straight and that the resultant prestressing force in these tendons
lies below the centroidal axis of the concrete section. At transfer, the member cambers
(deflects upward), remaining in contact with the casting bed only at the ends. Thus, the
concrete beam is compelled to resist the prestressing force and to support its own weight
simultaneously.

At transfer, the prestressing force in the steel diminishes because the concrete con-
tracts under the imposed load. The prestressing force continues to diminish as time elaps-
es as a result of the relaxation of the steel and the shrinkage and plastic flow of the con-
crete subsequent to transfer. To be effective, prestressed-concrete construction therefore
requires the use of high-tensile steel in order that the reduction in prestressing force may
be small in relation to the initial force. In all instances, we assume that the ratio of final to
initial prestressing force is 0.85. Moreover, to simplify the stress calculations, we also as-
sume that the full initial prestressing force exists at transfer and that the entire reduction
in this force occurs during some finite interval following transfer.

Therefore, two loading states must be considered in the design: the initial state, in
which the concrete sustains the initial prestressing force and the beam weight; and the fi-
nal state, in which the concrete sustains the final prestressing force, the beam weight, and
all superimposed loads. Consequently, the design of a prestressed-concrete beam differs
from that of a conventional type in that designers must consider two stresses at each
point, the initial stress and the final stress, and these must fall between the allowable com-
pressive and tensile stresses. A beam is said to be in balanced design if the critical initial
and final stresses coincide precisely with the allowable stresses.

The term prestress designates the stress induced by the initial prestressing force. The
terms prestress shear and prestress moment refer to the vertical shear and bending mo-
ment, respectively, that the initial prestressing force induces in the concrete at a given
section.

The eccentricity of the prestressing force is the distance from the action line of this re-
sultant force to the centroidal axis of the section. Assume that the tendons are subjected to
a uniform prestress. The locus of the centroid of the steel area is termed the trajectory of
the steel or of the prestressing force.

The sign convention is as follows: The eccentricity is positive if the action line of the
prestressing force lies below the centroidal axis. The trajectory has a positive slope if it
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inclines downward to the right. A load is positive if it acts downward. The vertical shear
at a given section is positive if the portion of the beam to the left of this section exerts an
upward force on the concrete. A bending moment is positive if it induces compression
above the centroidal axis and tension below it. A compressive stress is positive; a tensile
stress, negative.

The notational system is as follows. Cross-sectional properties: 4 = gross area of sec-
tion, in? (cm?) 4, = area of prestressing steel, in? (cm?); d = effective depth of section at
ultimate strength, in (mm); / = total depth of section, in (mm); / = moment of inertia of
gross area, in* (cm*); y, = distance from centroidal axis to bottom fiber, in (mm); S, = sec-
tion modulus with respect to bottom fiber = I/y,, in® (cm?); k, = distance from centroidal
axis to lower kern point, in (mm); k, = distance from centroidal axis to upper kern point,
in (mm). Forces and moments: F; = initial prestressing force, b (N); F, = final prestress-
ing force, Ib (N); 0 = F//F;; e = eccentricity of prestressing force, in (mm); e, = eccen-
tricity of prestressing force having concordant trajectory; 6 = angle between trajectory (or
tangent to trajectory) and horizontal line; m = slope of trajectory; w = vertical load exert-
ed by curved tendons on concrete in unit distance; w,, = unit beam weight; w, = unit su-
perimposed load; wp, = unit dead load; wy; = unit live load; w, = unit ultimate load; ¥, =
prestress shear; M, = prestress moment; M,, = bending moment due to beam weight; M, =
bending moment due to superimposed load; C, = resultant compressive force at ultimate
load; T, = resultant tensile force at ultimate load. Stresses: f, = ultimate compressive
strength of concrete, 1b/in” (kPa); f.; compressive strength of concrete at transfer; f = ul-
timate strength of prestressing steel; f;, = stress in prestressing steel at ultimate load; f;, =
stress in bottom fiber due to initial prestressing force; f;,, = bending stress in bottom fiber
due to beam weight; f;,; = bending stress in bottom fiber due to superimposed loads; f;, =
stress in bottom fiber at initial state = f}, + f,,,; fo, = stress in bottom fiber at final state =
Nfop + fow + Joss foai = initial stress at centroidal axis. Camber: A, = camber due to initial
prestressing force, in (mm); A,, = camber due to beam weight; A; = camber at initial state;
A, = camber at final state.

The symbols that refer to the bottom fiber are transformed to their counterparts for the
top fiber by replacing the subscript & with z. For example, f,; denotes the stress in the top
fiber at the initial state.

DETERMINATION OF PRESTRESS SHEAR
AND MOMENT

The beam in Fig. 314 is simply supported at its ends and prestressed with an initial force
of 300 kips (1334.4 kN). At section C, the eccentricity of this force is 8 in (203.2 mm),
and the slope of the trajectory is 0.014. (In the drawing, vertical distances are exaggerated
in relation to horizontal distances.) Find the prestress shear and prestress moment at C.

Calculation Procedure:

1. Analyze the prestressing forces
If the composite concrete-and-steel member is regarded as a unit, the prestressing forces
that the steel exerts on the concrete are purely internal. Therefore, if a beam is simply sup-
ported, the prestressing force alone does not induce any reactions at the supports.

Refer to Fig. 315, and consider the forces acting on the beam segment GB solely as a
result of F;. The left portion of the beam exerts a tensile force F; on the tendons. Since GB
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FIGURE 31

is in equilibrium, the left portion also induces compressive stresses on the concrete at C,
these stresses having a resultant that is numerically equal to and collinear with F;.

2. Express the prestress shear and moment in terms of F;

Using the sign convention described, express the prestress shear and moment in terms
of F; and 6. (The latter is positive if the slope of the trajectory is positive.) Thus ¥, =
—F} sin 6; M, =—Fe cos 6.

3. Compute the prestress shear and moment

Since 4 is minuscule, apply these approximations: sin 8 =tan 6, and cos 6= 1. Then

V,=-F,tan 6 (53)

Or, ¥, =-300,000(0.014) = —4200 1b (-18,681.6 N).
Also,

M,=-Fe (54)

Or, M, = -300,000(8) = 2,400,000 in'Ib (-271,152 N'm).

STRESSES IN A BEAM WITH
STRAIGHT TENDONS

A 12 x 18 in (304.8 x 457.2 mm) rectangular beam is subjected to an initial prestressing
force of 230 kips (1023.0 kN) applied 3.3 in (83.82 mm) below the center. The beam is on
a simple span of 30 ft (9.1 m) and carries a superimposed load of 840 Ib/lin ft (12,258.9
N/m). Determine the initial and final stresses at the supports and at midspan. Construct di-
agrams to represent the initial and final stresses along the span.
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Calculation Procedures:

1. Compute the beam properties
Thus, 4 = 12(18) = 216 in? (1393.6 cm?); S, = S, = (Ve)(12)(18)? = 648 in? (10,620.7 cm>);
w,, = (216/144)(150) = 225 Ib/lin ft (3,283.6 N/m).

2. Calculate the prestress in the top and bottom fibers

Since the section is rectangular, apply f, = (F/A)(1 + 6e/h) = (230,000/216)(1 + 6 x

3.3/18) =+ 2236 Ib/in® (+15,417.2 kPa); f,, = (F/A)X1 — 6e/h) = —106 Ib/in” (-730.9 kPa).
For convenience, record the stresses in Table 3 as they are obtained.

3. Determine the stresses at midspan due to gravity loads

Thus M, = (“)(840)(30)%(12) = 1,134,000 in°Ib (128,119.32 N'm); f;, = —1,134,000/648 =
—~1750 1b/in? (-12,066.3 kPa); f,, = + 1750 Ib/in? (12,066.3 kPa). By proportion, f,, =
—-1750(225/840) = —469; f,,, = +469 1b/in? (+ 3233.8 kPa).

4. Compute the initial and final stresses at the supports
Thus, f;; = + 2236 Ib/in? (+15,417.2 kPa); f;; = 106 Ib/in? (-730.9 kPa); ;= 0.85(2236) =
+1901 1b/in? (+13,107.4 kPa); f,-= 0.85(—106) = —90 1b/in (~620.6 kPa).

5. Determine the initial and final stresses at midspan

Thus f;; = + 2236 - 469 = + 1767 Ib/in® (+12,183.5 kPa); f;; = —106 + 469 = +363 Ib/in?
(+2502.9 kPa); f,= + 1901 — 469 — 1750 = 318 Ib/in? (-2192.6 kPa); f,,=-90 + 469 +
1750 = +2129 1b/in? (+14,679.5 kPa).

6. Construct the initial-stress diagram

In Fig. 32a, construct the initial-stress diagram 4,4, BC at the support and the initial-stress
diagram M,M,DE at midspan. Draw the parabolic arcs BD and CE. The stress diagram at
an intermediate section Q is obtained by passing a plane normal to the longitudinal axis.

TABLE 3. Stresses in Prestressed-Concrete Beam

At support At midspan

Bottom fiber Top fiber Bottom fiber Top fiber

(a) Initial prestress, +2,236 (+15,417.2) -106 (-730.9) +2,236 (+15417.2) -106  (-730.9)
1b/in? (kPa)

(b) Final prestress, +1,901 (+13,107.4) -90 (-620.6) +1,901 (+13,107.4) -90  (-620.6)
1b/in? (kPa)

(¢) Stressdueto ..., ... —469 (-3,233.8) +469 (3,233.8)
beam weight,
1b/in? (kPa)

(d) Stressdueto ... ... -1,750 (~12,066.3) +1,750 (+12,066.3)
superimposed
load, 1b/in?
(kPa)

Initial stress: 42,236 (+15,417.2) —106 (<730.9) +1,767 (+12,183.5) +363 (+2,502.9)
(@ +Ho)

Final stress: (b) +  +1,901 (+13,107.4) -90 (—620.6) —-318(-2,192.6) +2,129 (+14,679.5)
©+@
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The offset from a reference line through B to the arc BD represents the value of f;,, at that
section.

7. Construct the final-stress diagram
Construct Fig. 32b in an analogous manner. The offset from a reference line through B’ to
the arc B'D’ represents the value of £, + £, at the given section.

8. Alternatively, construct composite stress diagrams for the top
and bottom fibers

The diagram pertaining to the bottom fiber is shown in Fig. 33. The difference between
the ordinates to DE and 4B represents f; and the difference between the ordinates to FG
and AC represents f;.

(+2502.9 kPa)
M, +363Elb/in2

(-730.9 kPa)
~106 tb/in2

+2236 Ib/in2 B
(+15,417.2 kPa) (-14,679.5 kPa)

+2129 Ib/in? ¢’

M,

(-620.6 kPa)

-90b/in Z318 1b/in

(-2192 6 kPa)

As 1901 1b/in2 B'
(+13,107.4 kPa)

FIGURE 32. Isometric diagrams for half-span.
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FIGURE 33. Stresses in bottom fiber along half-span.

This procedure illustrates the following principles relevant to a beam with straight ten-
dons carrying a uniform load: At transfer, the critical stresses occur at the supports; under
full design load, the critical stresses occur at midspan if the allowable final stresses ex-
ceed 7 times the allowable initial stresses in absolute value.

The primary objective in prestressed-concrete design is to maximize the capacity of a
given beam by maximizing the absolute values of the prestresses at the section having the
greatest superimposed-load stresses. The three procedures that follow, when taken as a
unit, illustrate the manner in which the allowable prestresses may be increased numerical-
ly by taking advantage of the beam-weight stresses, which are opposite in character to the
prestresses. The next procedure will also demonstrate that when a beam is not in balanced
design, there is a range of values of F; that will enable the member to carry this maximum
allowable load. In summary, the objective is to maximize the capacity of a given beam
and to provide the minimum prestressing force associated with this capacity.

DETERMINATION OF CAPACITY
AND PRESTRESSING FORCE FOR A BEAM
WITH STRAIGHT TENDONS

An 8 x 10 in (203.2 x 254 mm) rectangular beam, simply supported on a 20-ft (6.1-m)
span, is to be prestressed by means of straight tendons. The allowable stresses are: initial,
+ 2400 and - 190 Ib/in? (+16,548 and ~1310.1 kPa); final, + 2250 and —425 lb/in?
(+15,513.8 and — 2930.3 kPa). Evaluate the allowable unit superimposed load, the maxi-
mum and minimum prestressing force associated with this load, and the corresponding
eccentricities.

Calculation Procedure:

1. Compute the beam properties
Here A = 80 in? (516.16 cm?); S = 133 in? (858.1 ¢cm?); w,, = 83 1b/lin ft (1211.3 N/m).
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2. Compute the stresses at midspan due to the beam weight
Thus, M,, = (*2)(83)(20)*(12) = 49,800 in-lb (5626.4 N-m); f;,, = —49,800/133 = -374
1b/in? (—2578.7 kPa), f,, = +374 Ib/in® (2578.7 kPa).
3. Set the critical stresses equal to their allowable values to
secure the allowable unit superimposed load
Use Fig. 32 or 33 as a guide. At support: f;, = +2400 Ib/in? (+16,548 kPa); f,; = ~190 1b/in?
(=1310.1 kPa); at midspan, f,, = 0.85(2400) — 374 + f,, = —425 1b/in® (-2930.4 kPa);
Sy = 0.85(-190) + 374 + f,, = +2250 Ib/in? (+15,513.8 kPa). Also, f,, = 2091 Ib/in’
(-14,417.4 kPa); f,, = +2038 1b/in? (+14,052 kPa).

Since the superimposed-load stresses at top and bottom will be numerically equal, the
latter value governs the beam capacity. Or w, = w,, f/f;, = 83(2038/374) = 452 Ib/lin ft
(6596.4 N/m).

4. Find F,; .., and its eccentricity

The value of w; was found by setting the critical value of f;; and of f,- equal to their re-
spective allowable values. However, since S), is excessive for the load w,, there is flexibil-
ity with respect to the stresses at the bottom. The designer may set the critical value of ei-
ther f; or fyr equal to its allowable value or produce some intermediate condition. As
shown by the calculations in step 3, f,may vary within a range of 2091 — 2038 = 53 Ib/in’
(365.4 kPa). Refer to Fig. 34, where the lines represent the stresses indicated.

Points B and F are fixed, but points 4 and E may be placed anywhere within the 53-
1b/in? (365.4-kPa) range. To maximize F,, place 4 at its limiting position to the right; i.e.,
set the critical value of f;; rather than that of f,, equal to the allowable value. Then f,; =
Fimax/A = ¥2(2400 — 190) = + 1105 Ib/in? (+7619.0 kPa); F, ., = 1105(80) = 88,400 Ib
(393,203.2 N); f, = 1105 + 88,400e/133 = + 2400; e = 1.95 in (49.53 mm).

5. Find F; ,,;, and its eccentricity

For this purpose, place 4 at its limiting position to the left. Then f;,, = 2,400 - (53/0.85) =
+2338 1b/in? (+ 16,120.5 kPa); f.,; = + 1074 Ib/in? (+7405.2 kPa); F; ., = 85,920 Ib
(382,172.2 N); e = 1.96 in (49.78 mm).

6. Verify the value of F,,,,. by checking the critical stresses

At support: f;; = + 2400 1b/in? (+16,548.0 kPa); f; = —190 Ib/in?> (-1310.1 kPa). At
midspan: f,, =+2040 — 374 — 2038 = -372 Ib/in* (-2564.9 kPa); f,;=—162 + 374 + 2038
= 42250 Ib/in? (+15,513.8 kPa).

{1116.9 kPa) 162 1b/inf 2250 Ib/in? (15,513.8 kPa)
(25787 kPa) 374 Ib/il? 2038 Ib/in? (14,052 kPo)

Bl_lo|p F
<
0A=0851,, 0B=0851,,
| _ca AC = f, BD = f,,,
CE = f,, DF =1,
OE = £y OF =
E 0 C A
2038 1b/in? (14,052 kPa) _ |374 Ib/in? (2578.7 kPo)
(2564 9 kPa) 37210/n2| 2040 Ib/in? (14,065 8 kPa) __|
¥ |

FIGURE 34. Stresses at midspan under maximum prestressing force.
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7. Verify the value of F; ,,;, by checking the critical stresses

At support: f,; =+ 2338 1b/in? (16,120.5 kPa); £, = —190 Ib/in? (-1310.1 kPa). At midspan:
Jor =0.85(2338) — 374 — 2038 = —425 Ib/in? (-2930.4 kPa); f,r= +2250 Ib/in? (+15,513.8
kPa).

BEAM WITH DEFLECTED TENDONS

The beam in the previous calculation procedure is to be prestressed by means of tendons
that are deflected at the quarter points of the span, as shown in Fig. 35a. Evaluate the al-
lowable unit superimposed load, the magnitude of the prestressing force, the eccentricity
e, in the center interval, and the maximum and minimum allowable values of the eccen-
tricity e, at the supports. What increase in capacity has been obtained by deflecting the
tendons?

CA.
-3 te, /
A ] M C D
5 5 J_ 5 5'
(1.5m) 5m) T (15m) (1 5m)
{0) Beam
{(1310.1 kPq)
I9Olb/in2f
F [ G
J/L_,L y
1
E Hé' " i 471 1b/in?
190 1b/in 281 1b/in? (3247.5kPa)
(1310. kPoz)]: (1937.5 kPg)
A 8 Ml L374 1b/in?
(b} Absolute values of f, along half-span (2578.7 kPa)
F fop G f
| 2619 1b/in®
E 2338 1b/in? (18,058 kPQ)
(16,120.5 kPa) J
2338 1b/in2 Tow
(16,1205 kPo) A osib/in2 374 \b/in?
(1937.5 kPa) (2578.7 kPa)
A B ™

Note: Vaiues of f,, not to scale

{c) Volues of f,, along hatf-span

FIGURE 35



2.60 REINFORCED AND PRESTRESSED CONCRETE ENGINEERING AND DESIGN

Calculation Procedure:

1. Compute the beam-weight stresses at B
In the composite stress diagram, Fig. 35b, the difference between an ordinate to EFG and
the corresponding ordinate to AHJ represents the value of f;; at the given section. It is ap-
parent that if AE does not exceed HF, then f; does not exceed HE in absolute value any-
where along the span. Therefore, for the center interval BC, the critical stresses at transfer
occur at the boundary sections B and C. Analogous observations apply to Fig. 35¢.
Computing the beam-weight stresses at B yields f;,, = (%)(=374) = —281 Ib/in?
(-1937.5 kPa); f,, = +281 1b/in? (+1937.5 kPa).

2. Tentatively set the critical stresses equal to their allowable
values to secure the allowable unit superimposed load

Thus, at B: fy; = f,,, — 281 = +2400; f,; = f,, + 281 = ~190; f;,, = +2681 Ib/in? (+18,485.5
kPa); f;, = —471 Ib/in? (-3247.5 kPa).

At M: f,, = 0.85(2681) -374 + f,, = —425;f,{= 0.85(—471) + 374 + f,, = +2250; f,, =
-2330 b/in? (~16,065.4 kPa); f,, = +2277 Ib/in* (+ 15,699.9 kPa). The latter value con-
trols.

Also, w, = 83(2277/374) = 505 1b/lin ft (7369.9 N/m); 505/452 = 1.12. The capacity is
increased 12 percent.

When the foregoing calculations are compared with those in the previous calculation
procedure, the effect of deflecting the tendons is to permit an increase of 281 Ib/in?
(1937.5 kPa) in the absolute value of the prestress at top and bottom. The accompanying
increase in f; is 0.85(281) = 239 1b/in? (1647.9 kPa).

3. Find the minimum prestressing force and the eccentricity e,
Examination of Fig. 34 shows that f,; is not affected by the form of trajectory used.
Therefore, as in the previous calculation procedure, F; = 85,920 1b (382,172.2 N); f,,, =
1074 — 85,920¢,/133 =—471; ¢, = 2.39 in (60.706 mm).

Although it is not required, the value of f;,, = 1074 + 1074 — (—471) = +2619 Ib/in?
(+18,058kPa), or f;, = 2681 — 53/0.85 =+2619 1b/in> (+18,058kPa).

4. Establish the allowable range of values of e,
At the supports, the tendons may be placed an equal distance above or below the center.
Then e, pay = 1.96 in (23.44 mm); e pyin = —1.96 in (-23.44 mm).

BEAM WITH CURVED TENDONS

The beam in the second previous calculation procedure is to be prestressed by tendons ly-
ing in a parabolic arc. Evaluate the allowable unit superimposed load, the magnitude of
the prestressing force, the eccentricity of this force at midspan, and the increase in capac-
ity accruing from the use of curved tendons.

Calculation Procedure:

1. Tentatively set the initial and final stresses at midspan

equal to their allowable values to secure the allowable unit
superimposed load

Since the prestressing force has a parabolic trajectory, lines EFG in Fig. 355 and ¢ will be
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parabolic in the present case. Therefore, it is possible to achieve the full allowable initial
stresses at midspan. Thus, f;; = £, bp — 374 =+2400; f;; = f,,, + 374 =-190; f;,, = +2774 Ib/in’
(+19,126.7 kPa); f,, = 564 Ib/in* (—-3888.8 kPa); f,,= 0.85(2774) ~ 374 + f,,, = ~425; f,,=
0.85(=564) + 374 + f,, = + 2250; f,, = —2409 1b/in? (-16,610.1 kPa); f,, = +2356 lb/m2
(+16,244.6 kPa). The latter value controls.

Also, w, = 83(2356/374) = 523 Ib/lin ft (7632.6 N/m); 523/452 = 1.16. Thus the capac-
ity is increased 16 percent.

When the foregoing calculations are compared with those in the earlier calculation
procedure, the effect of using parabolic tendons is to permit an increase of 374 Ib/in?
(2578.7 kPa) in the absolute value of the prestress at top and bottom. The accompanying
increase in f; is 0.85(374) = 318 1b/in? (2192.6 kPa).

2. Find the minimum prestressing force and its eccentricity

at midspan

As before, F; = 85,920 Ib (382,172.2 N); f,, = 1074 — 85,920¢/133 = -564; ¢ = 2.54 in
(64.516 mm)

DETERMINATION OF SECTION MODULI

A beam having a cross-sectional area of 500 in? (3226 ¢cm?) sustains a beam-weight mo-
ment equal to 3500 in'kips (395.4 kN-m) at midspan and a superimposed moment that
varies parabolically from 9000 in-kips (1016.8 kN-m) at midspan to 0 at the supports. The
allowable stresses are: initial, +2400 and —190 1b/in? (+16,548 and ~1310.1 kPa); final, +
2250 and —200 1b/in? (+15,513.8 and —1379 kPa). The member will be prestressed by ten-
dons def